• Title/Summary/Keyword: Wet etch

Search Result 143, Processing Time 0.037 seconds

Precise EPD Measurement of Single Crystal Sapphire Wafer

  • Lee, Yumin;Kim, Youngheon;Kim, Chang Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.223.1-223.1
    • /
    • 2013
  • Since sapphire single crystal is one of the materials that have excellent mechanical and optical properties, the single crystal is widely used in various fields, and the demand for the use of substrate of LED devices is increasing rapidly. However, crystal defects such as dislocations and stacking faults worsen the properties of the single crystal intensely. When sapphire wafer of single crystal is used as LED substrate, especially, crystal defects have a strong influence on the characteristics of a film deposited on the wafer. In such a case quantitative assessment of the defects is essential, and the evaluation technique is now becoming one of the most important factors in commercialization of sapphire wafer. Wet etching is comparatively easy and accurate method to estimate dislocation density of single crystal because etching reaction primarily takes place where dislocations reached crystal surface which are chemically weak points, and produces etch pit. In the present study, the formation behavior of etch pits and etching time dependence were studied systematically. Etch pit density(EPD) analysis using optical microscope was also conducted and measurement uncertainty of EPD was studied to confirm the reliability of the results. EPDs and measurement uncertainties for 4 inch sapphire wafers were analyzed in terms of 5 and 21 points EPD readings. EPDs and measurement uncertainties in terms of 5 points readings for 4 inch wafers were compared by 2 organizations. We found that the average EPD value in terms of 5 points readings for a 4 inch sapphire wafer may represent the EPD value of the wafer.

  • PDF

Evaluation of Mechanical Backside Damage of Silicon Wafer by Minority Carrier Recombination Lifetime and Photo-Acoustic Displacement Method

  • Park, Chi-Young;Cho, Sang-Hee
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.155-159
    • /
    • 1997
  • We investigated the effect of mechanical backside damage in Czochralski silicon wafer. The intensity of mechanical damage were evaluated by minority carrier recombination lifetime by a laser excitation/microwave reflection photoconductance decay method, photo-acoustic displacement method, X-ray section topography, and wet oxidation/preferential etch methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the photoacoustic displacement values are also increased proportionally.

  • PDF

Fabrication of Substrate Integrated Waveguide (SIW)-based Shielded Stripline using Silicon Anisotropic Wet-Etch and BCB-based Polymer Bonding (실리콘 이방성 습식 식각과 BCB 폴리머 접합을 이용한 기판 집적형 도파관(SIW) 기반의 차폐된 스트립선로의 제작)

  • Bang, Yong-Seung;Kim, Nam-Gon;Kim, Jung-Mu;Cheon, Chan-Gyul;Kwon, Young-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1513_1514
    • /
    • 2009
  • This paper reports on a fabrication of novel substrate integrated waveguide (SIW)-based shielded stripline applicable to the broadband transverse electromagnetic (TEM) single-mode propagation. We suggested a structure for half-SIW and half-shielded stripline, which combined through the benzocyclobutene (BCB) bonding layer. The electrical interconnection between the sidewall of anisotropic wet-etched silicon and patterned BCB layers is measured subsequent to the metalization on the side wall. The proposed SIW-based shielded stripline has great potential in terms of simple fabrication, integration with planar circuits and monolithic system fabricated on a SIW structure.

  • PDF

Micro-drilling of Fused Silica by Laser Induced Wet Etching (레이저습식각을 이용한 용융실리카의 미세구멍가공)

  • Baek, Byeong-Seon;Lee, Jong-Kil;Jeon, Byung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1344-1348
    • /
    • 2003
  • It is generally known to be difficult to etch a surface of a transparent material such as fused silica by conventional laser ablation in which the surface is simply irradiated with a laser beam. A lot of studies have been done to provide a method capable of efficiently etching transparent materials without defects such as cracks. One of the promising methods or the micro-machining of optically transparent materials is laser induced etching. In this study, micro-drilling of fused silica by laser induced wet etching was conducted. KrF excimer and YAG laser were used as light sources. Acetone solution pyrene and ethanol solution of rhodamine were used as etchant.

  • PDF

A Study on the Hump Characteristics of the MOSFETs (MOSFET의 험프 특성에 관한 연구)

  • Kim, Hyeon-Ho;Lee, Yong-Hui;Yi, Jae-Young;Yi, Cheon-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.631-634
    • /
    • 2002
  • In this paper we improved that hump occurrence by increased oxidation thickness, and control field oxide recess$(\leq20nm)$, wet oxidation etch time(19HF, 30sec), STI nitride wet cleaning time(99 HF, 60sec + P 90min) and gate pre-oxidation cleaning time(U10min+19HF, 60sec) to prevent hump occurring at STI channel edge.

  • PDF

The MOSFET Hump Characteristics Occurring at STI Channel Edge (STI 채널 모서리에서 발생하는 MOSFET의 험프 특성)

  • 김현호;이천희
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • An STI(Shallow Trench Isolation) by using a CMP(Chemical Mechanical Polishing) process has been one of the key issues in the device isolation[1] In this paper we fabricated N, P-MOSFEET tall analyse hump characteristics in various rounding oxdation thickness(ex : Skip, 500, 800, 1000$\AA$). As a result we found that hump occurred at STI channel edge region by field oxide recess. and boron segregation(early turn on due to boron segregatiorn at channel edge). Therefore we improved that hump occurrence by increased oxidation thickness, and control field oxide recess( 20nm), wet oxidation etch time(19HF,30sec), STI nitride wet cleaning time(99HF, 60sec+P 90min) and fate pre-oxidation cleaning time (U10min+19HF, 60sec) to prevent hump occurring at STI channel edge.

  • PDF

Surface Morphology Variation During Wet Etching of N-face GaN Using KOH (KOH를 이용한 N-face GaN의 습식 식각으로 인한 표면 변화)

  • Kim, Taek-Seung;Han, Seung-Cheol;Kim, Jae-Kwan;Lee, Ji-Myon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.217-222
    • /
    • 2008
  • Characteristics of etching and induced surface morphology variation by wet-etching of n-face n-type GaN were investigated using KOH solutions. It was observed that hexagonal pyramids were formed on the etched surface regardless of etching conditions. However, the size of the hexagonal pyramids was changed as the etching time and temperature increased, respectively. Initially, as the etching time and concentration of KOH solution increased, the hexagonal pyramid was observed to be dissociated into smaller pyramids. However, as the etching time increased further, the size of the hexagonal pyramids increased again, indicating that the etching of N-face n-type GaN by KOH solutions proceeded through the evolution of hexagonal pyramids, such as formation, dissociation and enlargement of pyramids. Furthermore, it was also observed that there is a correlation between the photoluminescence intensity of the etched surface and the value of root-mean-square roughness. The intensity of PL increased as the roughness value increased due to the enhancement of the extraction efficiency of the generated photons.

Effects of DI Rinse and Oxide HF Wet Etch Processes on Silicon Substrate During Photolithography (반도체 노광 공정의 DI 세정과 Oxide의 HF 식각 과정이 실리콘 표면에 미치는 영향)

  • Baik, Jeong-Heon;Choi, Sun-Gyu;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.423-428
    • /
    • 2010
  • This study shows the effects of deionized (DI) rinse and oxide HF wet etch processes on silicon substrate during a photolithography process. We found a fail at the wafer center after DI rinse step, called Si pits, during the fabrication of a complementary metal-oxide-semiconductor (CMOS) device. We tried to find out the mechanism of the Si pits by using the silicon wafer on CMOS fabrication and analyzing the effects of the friction charge induced by the DI rinsing. The key parameters of this experiment were revolution per minute (rpm) and time. An incubation time of above 10 sec was observed for the formation of Si pits and the rinsing time was more effective than rpm on the formation of the Si pits. The formation mechanism of the Si pits and optimized rinsing process parameters were investigated by measuring the charging level using a plasma density monitor. The DI rinse could affect the oxide substrate by a friction charging phenomenon on the photolithography process. Si pits were found to be formed on the micro structural defective site on the Si substrate under acceleration by developed and accumulated charges during DI rinsing. The optimum process conditions of DI rinse time and rpm could be established through a systematic study of various rinsing conditions.

Wet chemical etching of molten KOH/NaOH eutectic alloy to evaluate AlN single crystal (AlN 단결정의 품질평가를 위한 molten KOH/NaOH eutectic alloy의 화학적 습식에칭)

  • Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2014
  • We investigated the optimal etching conditions and properties of the surface change due to molten KOH/NaOH chemical wet etching using an AlN wafer which has been put to practical use in the present study. Results were observed using a scanning electron microscope after 5 minutes etching at $350^{\circ}C$, was found to have a surface form of the respective other Al-face, the N-face. In particular, etch-pit in the form of a hexagon, which is observed in the Al-face appeared, It was calculated at $2{\times}10^6/cm^2{\sim}10^{10}/cm^2$ dislocation density. In the case of N-face, lattice defects in the form of the hexagonal pyramids is formed. It was discovered that in order to observe the orientation of the wafer, which corresponds to the C-axis direction of the resulting hexagonal AlN which was analyzed using XRD (0002) and is a state of being oriented in the (0004) plane. The Radius of curvature of AlN wafer was 1.6~17 m measured by DC-XRD rocking curve position.

Study on the Micro Channel Assisted Release Process (미세 유체통로를 이용한 대면적 평판 구조의 부양에 관한 연구)

  • Kim, Che-Heung;Lee, June-Young;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1924-1926
    • /
    • 2001
  • A novel wet release process ($\mu$ CARP - Micro Channel Assisted Release Process) for releasing an extreme large-area plate structure without etching hole is proposed and experimented. Etching holes in conventional process reduce a effective area and degrade an optical characteristics by a diffraction. In addition, as the area of a released structure increases, the stietion becomes more serious. The proposed process resolves these problems by the introduction of a micro fluidic channel beneath the structure which will be released. In this paper, a 5 mm${\times}$5mm-single crystal silicon plate structure was released by the proposed $\mu$CARP without etch holes on the structure. The variation in etching time with respect to the of the introduced micro channel is also examined. This process is expected to be beneficial for the actuator of a nano-scale data storage and the scanning mirror.

  • PDF