• Title/Summary/Keyword: Weissella sp.

Search Result 13, Processing Time 0.032 seconds

Anti-Inflammatory Activity of Ethanol Extracts from Hizikia fusiformis Fermented with Lactic Acid Bacteria in LPS-Stimulated RAW264.7 Macrophages (유산균 종류에 따른 발효톳 추출물의 항염증 활성)

  • Kwon, Myeong Sook;Mun, Ok-Ju;Bae, Min Joo;Lee, Seul-Gi;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1450-1457
    • /
    • 2015
  • The anti-inflammatory effect of ethanol extracts from Hizikia fusiformis fermented with and without lactic acid bacteria was compared in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. The fermentation was done using Weissella sp. SH-1 and Lactobacillus casei in a mixture of glucose and lactate source at $30^{\circ}C$ for 30 days. As a result, we confirmed that the fermentation of H. fusiformis with lactic acid bacteria inhibited LPS-stimulated nitric oxide (NO) production and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-6, tumor necrosis factor ${\alpha}$, and IL-$1{\beta}$ as important inflammatory factors. During a comparison analysis, we found that L. casei fermented groups significantly suppressed NO production by regulating iNOS and COX-2 expression. Also, the effective suppression of pro-inflammatory cytokine and LPS-induced activation of mitogen- activated protein kinase indicated that the fermentation using Weissella sp. SH-1 and L. casei may provide an increment towards the extraction of active components, which are effective anti-inflammatory agents.

Isolation of Lactic Acid Bacteria with Anti-MRSA Bacteriocin Activity and Characterization of the Bacteriocin Product

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Cho, Sang-Hyun;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • This study aimed at isolating lactic acid bacteria with anti-MRSA (methicillin-resistant Staphylococcus aureus) bacteriocin activity from fermented shrimp. We selected three strains, named Weissella sp. S1, S2, and S3, using analysis based on 16S rRNA gene sequences. All strains showed appropriate growth in an MRS medium containing 5% (w/v) NaCl and showed antibacterial activities against Bacillus cereus, Escherichia coli, Staphylococcus aureus, and MRSA. The strains exhibited similar growth rates at 0-5% NaCl, with approximate reduction in growth rate observed at 9% NaCl. Weissella sp. S1, S2, and S3 exhibited maximum growth rates at pH 7, 9, and 8, respectively. The crude bacteriocin was prepared from Weissella sp. S3 and subjected to characterization. The remaining activities after 30 min of exposure at each temperature were 100%, beyond 75%, and 49% at 4℃ and 37℃, 50℃ and 70℃, and 100℃, respectively. The remaining activities after 24 h of exposure at each pH were 100%, 75%, and 49% at pH 3 and 5, 7 and 9, and 10, respectively. Use of 50% (v/v) ethanol or isopropanol treatment did not diminish the antibacterial activity of the bacteriocin, while the 50% (v/v) hexane treatment reduced the activity by 51%. The molecular weight of the bacteriocin was nearly 6 kDa that was quantified using tricine-SDS-PAGE. Our findings suggest that Weissella sp. S3 may be considered a probiotic and useful source of antimicrobial substances in the development of bio-preservatives for food or in MRSA treatment.

Characterization of Weissella sp. Strains Isolated from Fermented Squid and the Antibacterial Activities of Fermented Rice against Harmful Bacteria (발효된 오징어젓갈에서 분리된 Weisella sp. 균주의 특성 분석 및 쌀발효물의 유해세균에 대한 항균활성 검증)

  • Go-Wun Yeo;Dong-Geun Lee;Ju-Hui Kim;Min-Joo Park;Jin Sun Kim;Yuck Yong Kim;Ki Hwan Yoo;Yong Jae Choi;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.506-511
    • /
    • 2023
  • The purposes of this study were to isolate and characterize lactic acid bacteria with antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) from fermented food and to confirm the antibacterial activities of fermented rice products using the isolated lactic acid bacterium. Three bacteria, namely, Weissella sp. ISF-1, ISF-2, and ISF-3, were selected from fermented squid based on the 16S rRNA gene sequence. All three strains grew well in an MRS medium containing 5% (w/v) NaCl and showed antibacterial activity against Bacillus cereus, Staphylococcus aureus, and MRSA. Their growth was excellent at 0% ~ 5% (w/v) NaCl and relatively good up to 7% (w/v) NaCl. The initial pH of 8 was optimal for their growth, and good growth was also observed at pH 6, 7, and 9. The lyophilisates of the fermented rice using Weissella sp. ISF-1 showed antibacterial activities against B. cereus, S. aureus, and MRSA. We inferred that isolated lactic acid bacteria could be useful in the development of probiotics and biopreservatives for foods and in the treatment of MRSA and may increase the value of rice products.

Description and Genomic Characteristics of Weissella fermenti sp. nov., Isolated from Kimchi

  • Jae Kyeong Lee;Ju Hye Baek;Dong Min Han;Se Hee Lee;So Young Kim;Che Ok Jeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1448-1456
    • /
    • 2023
  • A Gram-positive, non-motile, and non-spore-forming lactic acid bacterium, designated as BK2T, was isolated from kimchi, a Korean traditional fermented vegetable food, and the taxonomic characteristics of strain BK2T, along with strain LMG 11983, were analyzed. Both strains optimally grew at 30℃, pH 7.0, and 1.0% NaCl. Cells of both strains were heterofermentative and facultatively anaerobic rods, demonstrating negative reactions for catalase and oxidase. Major fatty acids (>10%) identified in both strains were C18:1 ω9c, C16:0, and summed feature 7 (comprising C19:1 ω6c and/or C19:1 ω7c). The genomic DNA G+C contents of both strains were 44.7 mol%. The 16S rRNA gene sequence similarity (99.9%), average nucleotide identity (ANI; 99.9%), and digital DNA-DNA hybridization (dDDH; 99.7%) value between strains BK2T and LMG 11983 indicated that they are different strains of the same species. Strain BK2T was most closely related to Weissella confusa JCM 1093T and Weissella cibaria LMG 17699T, with 100% and 99.4% 16S rRNA gene sequence similarities, respectively. However, based on the ANI and dDDH values (92.3% and 48.1% with W. confusa, and 78.4% and 23.5% with W. cibaria), it was evident that strain BK2T represents a distinct species separate from W. confusa and W. cibaria. Based on phylogenetic, phenotypic, and chemotaxonomic features, strains BK2T and LMG 11983 represent a novel species of the genus Weissella, for which the name Weissella fermenti sp. nov. is proposed. The type of strain is BK2T (=KACC 22833T=JCM 35750T).

Metabolic Flux Shift of Weissella kimchii sk10 Grown Under Aerobic Conditions

  • Park, Sun-Mi;Kang, Hye-Sun;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.919-923
    • /
    • 2004
  • The sk10 isolated from kimchi was identified as W. kimchii on the basis of l6s-rDNA sequencing. Studies were made to analyze the metabolic flux shift of the sk10 on glucose under aerobic growth conditions. The sk10 produced 38.2 mM acetate, 16.3 mM ethanol, and 33.2 mM lactate under aerobic conditions, but 2.4 mM acetate, 48.0 mM ethanol, and 44.1 mM lactate under anaerobic conditions. The NADH peroxidase (NADH-dependent hydrogen peroxidase) activity of sk10 grown under aerobic conditions was 11 times higher than that under anaerobic conditions. Under the low ratio of $NADH/NAD^+$, the metabolic flux toward lactate and ethanol was shifted to the flux through acetate kinase without NADH oxidation. The kinds of enzymes and metabolites of sk10 were close to those in the pathway of Leuconostoc sp., but the metabolites produced under aerobic growth conditions were different from those of Leuconostoc sp. The stoichiometric balance calculated using the concentrations of metabolites and substrate was about 97%, coincident with the theoretical values under both aerobic and anaerobic conditions. From these results, it was concluded that the metabolic flux of W. kimchii sk10 was partially shifted from lactate and ethanol to acetate under aerobic conditions only.

Antimicrobial Activities of Nano Metal Hybrid Materials against the Microorganisms Isolated from Cucurbit Seeds (나노 금속복합체의 박과 작물 종자 분리균에 대한 항균효과)

  • Kim, Sang Woo;Gwon, Byeong Heon;Ju, Han Jun;Adhikari, Mahesh;Park, Mi-ri;Song, Seok-Kyun;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.179-187
    • /
    • 2019
  • This study was carried out to test the antimicrobial activities of nano metal hybrid materials produced by plasma technologies (radio frequency-thermal plasma system and direct current sputtering system) against microbes isolated from cucurbit (watermelon, pumpkin, and gourd) seeds. Eight different nano metal hybrid materials and four carriers were tested against five different fungal and ten different bacterial isolates in vitro. Among the tested nano metal hybrid material, Brass/CaCO3 (1,000 ppm) exhibited 100% antimicrobial effect against all the five tested fungi. However, nano metal hybrid material Brass/CaCO3 (1,000 ppm) inhibited only four bacterial isolates, Weissella sp., Rhodotorula mucilaginosa, Burkholderia sp., and Enterococcus sp. at 100% level, and did not inhibited other six bacterial isolates. Nano metal hybrid material graphite-nickel (G-Ni) showed 100% inhibition rate against Rhizopus stolonifer and 52.94-71.76% inhibition rate against four different fungal isolates. Nano metal hybrid material G-Ni did not show any inhibition effects against tested ten bacterial isolates. In summary, among the tested eight different nano metal hybrid materials and four carriers, Brass/CaCO3 showed inhibition effects against five fungal isolates and four bacterial isolates, and G-Ni showed variable inhibition effects (52.94-100%) against five fungal isolates and did not show any inhibition effects against all the bacterial isolates.

Hydrolysis of Isoflavone Glucosides in Soymilk Fermented with Single or Mixed Cultures of Lactobacillus paraplantarum KM, Weissella sp. 33, and Enterococcus faecium 35 Isolated from Humans

  • Chun, Ji-Yeon;Jeong, Woo-Ju;Kim, Jong-Sang;Lim, Jin-Kyu;Park, Cheon-Seok;Kwon, Dae-Young;Choi, In-Duck;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.573-578
    • /
    • 2008
  • Lactobacillus paraplantarum KM (Lp), Weissella sp. 33 (Ws), and Enterococcus faecium 35 (Ef) were used in single (Lp, Ws, Ef) or mixed cultures (Lp+Ws, Lp+Ef, Ws+Ef) for soy milk fermentation ($37^{\circ}C$, 12 h). After 12 h, the cell numbers, pH, and TA of soymilk were $7.4{\times}10^8-6.0{\times}10^9CFU/ml$, 3.8-4.5, and 0.59-0.70%, respectively. Changes in the contents of glycitin and genistin in soymilk fermented with Ef were not significant. The contents of isoflavone glucosides in soymilk fermented with the other cultures decreased significantly with an increase of aglycone contents (p<0.05). It corresponded well with a sharp increase in ${\beta}$-glucosidase activity during fermentation. About 92-100% of the daidzin and 98-100% of the genistin in soymilk were converted to corresponding aglycones by Lp, Ws, or Lp+Ef within 12 h.

Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

  • Li, Yanbing;Nishino, Naoki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1304-1312
    • /
    • 2013
  • The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

Analysis of Vaginal Lactic Acid Producing Bacteria in Healthy Women

  • Nam, Hye-Ran;Whang, Kyung-Hee;Lee, Yeon-Hee
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.515-520
    • /
    • 2007
  • Vaginal lactic acid-producing bacteria of 80 pre-menopausal women were studied by isolation on Blood and DeMan-Rogosa-Sharpe agar, PCR with group-specific primers for Lactobacillus-denaturing gradient gel electrophoresis (DGGE), and PCR with specific primers for V3 region in 16S rRNA-temporal temperature gel electrophoresis (TTGE). Conventional isolation method on media detected only one lactobacillus (Lactobacillus brevis) while TTGE detected only Lactobacillus sp. DGGE detected seven Lactobacillus species; L. coleohominis, L. crispatus, L. iners, L. reuteri, L. rhamnosus, L. vaginalis, and Leuconostoc lactis. L. acidophilus and L. gasseri, which are prevalent in Western women, were not detected in Korean women. Furthermore, L. rhamnosus, Leuc. lactis, L. coleohominis, and Weissella cibaria, which were not previously reported in the vaginal microbiota of Korean women, were detected. The five most prevalent LABs in vaginal microbiota in Korean women were L. iners, Enterococcus faecalis, L. crispatus, Leuc. lactis, and W. cibaria.

Evaluation of Biological Activities of Fermented Hizikia fusiformis Extracts (톳 발효 추출물의 생리활성 검증)

  • Park, Seong Hwan;Lee, Sol Jee;Jeon, MyeongJeong;Kim, Seo-Yeon;Mun, Ok-Ju;Kim, Mihyang;Kong, Chang-Suk;Lee, Dong-Geun;Yu, Ki Hwan;Kim, Yuck Young;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.304-310
    • /
    • 2014
  • Antioxidative, immunostimulating, and antihypertensive activities of hot water extracts of fermented Hizikia fusiformis were evaluated. Fermentation with lactic acid bacteria generally increased the biological activities of H. fusiformis. Fermentation with isolated Weissella sp. SH-1 resulted in 13.83-62.15% DPPH radical scavenging activity and 34.90-59.25% SOD-like activity. The maximal inhibition of ACE was 82.25%, and the maximal reduction in NO production was 46.53%. Fermentation with Lactobacillus casei resulted in 11.98-72.84% DPPH radical scavenging activity and 14.17-33.62% of SOD-like activity. The maximal inhibition of ACE was 73.31%, and the maximal reduction in NO production was 65.20%. These results hint at the applicability of fermentation with lactic acid bacteria to improve the diverse biological activities of H. fusiformis and to develop functional materials or foods.