Browse > Article
http://dx.doi.org/10.5423/RPD.2019.25.4.179

Antimicrobial Activities of Nano Metal Hybrid Materials against the Microorganisms Isolated from Cucurbit Seeds  

Kim, Sang Woo (Department of Applied Plant Sciences, Kangwon National University)
Gwon, Byeong Heon (Department of Applied Plant Sciences, Kangwon National University)
Ju, Han Jun (Department of Applied Plant Sciences, Kangwon National University)
Adhikari, Mahesh (Department of Applied Plant Sciences, Kangwon National University)
Park, Mi-ri (Cheorwon Plasma Research Institute)
Song, Seok-Kyun (Cheorwon Plasma Research Institute)
Lee, Youn Su (Department of Applied Plant Sciences, Kangwon National University)
Publication Information
Research in Plant Disease / v.25, no.4, 2019 , pp. 179-187 More about this Journal
Abstract
This study was carried out to test the antimicrobial activities of nano metal hybrid materials produced by plasma technologies (radio frequency-thermal plasma system and direct current sputtering system) against microbes isolated from cucurbit (watermelon, pumpkin, and gourd) seeds. Eight different nano metal hybrid materials and four carriers were tested against five different fungal and ten different bacterial isolates in vitro. Among the tested nano metal hybrid material, Brass/CaCO3 (1,000 ppm) exhibited 100% antimicrobial effect against all the five tested fungi. However, nano metal hybrid material Brass/CaCO3 (1,000 ppm) inhibited only four bacterial isolates, Weissella sp., Rhodotorula mucilaginosa, Burkholderia sp., and Enterococcus sp. at 100% level, and did not inhibited other six bacterial isolates. Nano metal hybrid material graphite-nickel (G-Ni) showed 100% inhibition rate against Rhizopus stolonifer and 52.94-71.76% inhibition rate against four different fungal isolates. Nano metal hybrid material G-Ni did not show any inhibition effects against tested ten bacterial isolates. In summary, among the tested eight different nano metal hybrid materials and four carriers, Brass/CaCO3 showed inhibition effects against five fungal isolates and four bacterial isolates, and G-Ni showed variable inhibition effects (52.94-100%) against five fungal isolates and did not show any inhibition effects against all the bacterial isolates.
Keywords
Antimicrobial; Brass/$CaCO_3$; Cucurbit seed; Graphite-Nickel (G-Ni); Nano metal hybrid materials;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Adamson, A. W. and Gast, A. P. 1997. Physical Chemistry of Surfaces. 6th ed. John Wiley & Sons, New York, NY, USA. 808 pp.
2 Assis, S. M. P., Mariano, R. L. R., Silva-Hanlin, D. M. W. and Duarte, V. 1999. Bacterial fruit blotch caused by Acidovorax avenae subsp. citrulli in melon in the state of Rio Grande do Norte, Brazil Fitopatol. Bras. 24: 191. (In Portuguese)
3 Brannon-Peppas, L. and Blanchette, J. O. 2004. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56: 1649-1659.   DOI
4 Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A. 2005. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105: 1025-1102.   DOI
5 Burdman, S., Kots, N., Kritzman, G. and Kopelowitz, J. 2005. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis. 89: 1339-1347.   DOI
6 Chang, H.-S., Kim, J.-E., Chung, D.-J., Lee, J.-S., Choi, C.-B. and Kim, H.-Y. 2006. The antibacterial effect of photo-catalytic titanium dioxide on canine skin. Korean J. Vet. Res. 46: 279-284. (In Korean)
7 Dastjerdi, R. and Montazer, M. 2010. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B Biointerfaces 79: 5-18.   DOI
8 Ditta, A. 2012. How helpful is nanotechnology in agriculture? Adv. Nat. Sci. Nanosci. Nanotechnol. 3: 033002.   DOI
9 Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. and Kim, J. O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668.   DOI
10 Fravel, D. R., Marois, J. J., Lumsden, R. D. and Connick, W. J. Jr. 1985. Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75: 774-777.   DOI
11 Harrison, J. J., Tremaroli, V., Stan, M. A., Chan, C. S., Vacchi-Suzzi, C., Heyne, B. J. et al. 2009. Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environ. Microbiol. 11: 2491-2509.   DOI
12 Brinker, C. J. and Scherer, G. W. 1990. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, Boston, MA, USA. 908 pp.
13 Kim, H. S., Um, Y. H., Kim, S. W., Yadav, D. R., Adhikari, M., Lee, S. C. et al. 2015a. Antimicrobial activity of chemical fungicides against Acidovorax citrulli and Acidovorax valerianellae, pathogens of bacterial fruit blotch (BFB). J. Agric. Life Environ. Sci. 27: 56-60. (In Korean)
14 Holt, K. B. and Bard, A. J. 2005. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44: 13214-13223.   DOI
15 Hopkins, D. L., Thompson, C. M., Hilgren, J. and Lovic, B. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne disease of watermelon. Plant Dis. 87: 1495-1499.   DOI
16 Hsieh, C.-T., Tzou, D.-Y., Pan, C. and Chen, W.-Y. 2012. Microwaveassisted deposition, scalable coating, and wetting behavior of silver nanowire layers. Surf. Coat. Technol. 207: 11-18.   DOI
17 Hwang, I.-S., Cho, J., Hwang, J. H., Hwang, B., Choi, H., Lee, J. et al. 2011. Antimicrobial effects and mechanism(s) of silver nanoparticle. Korean J. Microbiol. Biotechnol. 39: 1-8. (In Korean)
18 Karimi, L., Zohoori, S. and Amini, A. 2014. Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking. New Carbon Mater. 29: 380-385.   DOI
19 Kim, S. W., Adhikari, M., Yadav, D. R., Lee, H. G., Um, Y. H., Kim, H. S. et al. 2015b. Antimicrobial activity of nano materials against Acidovorax citrulli and other plant pathogens. Res. Plant Dis. 21: 12-19. (In Korean)   DOI
20 Haruta, M. 1997. Size-and support-dependency in the catalysis of gold. Catal. Today 36: 153-166.   DOI
21 Martin, H. L. and Horlock, C. M. 2002. First report of Acidovorax avenae subsp. citrulli as a pathogen of Gramma in Australia. Plant Dis. 86: 1406.   DOI
22 Kumar, A., Verma, U. and Chauhan, S. 2012. Antimicrobial activity of nickel II coordinated compounds. G. J. B. B. 1: 310-313.
23 Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon. The hypothetical exam question becomes reality. Plant Dis. 79: 761-765.   DOI
24 Mamonova, I. A. 2013. Study of the antibacterial action of metal nanoparticles on clinical strains of gram-negative bacteria. World J. Med. Sci. 8: 314-317.
25 Pal, S., Tak, Y. K. and Song, J. M. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720.   DOI
26 Min, J. S. 2008. Effects of nano-silver liquid against various plant pathogenic microorganisms. M.S. thesis. Kangwon National University, Chuncheon, Korea. 92 pp. (In Korean)
27 Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. et al. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353.   DOI
28 Oya, A., Wakahara, T. and Yoshida, S. 1993. Preparation of pitchbased antibacterial activated carbon fiber. Carbon 31: 1243-1247.   DOI
29 Park, H.-J., Kim, J. Y., Kim, J., Lee, J.-H., Hahn, J.-S., Gu, M. B. et al. 2009. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 43: 1027-1032.   DOI
30 Kim, Y.-K., Hong, S.-J., Jee, H.-J., Shim, C.-K., Park, J.-H., Han, E.-J. et al. 2011. Population dynamics of effective microorganisms in microbial pesticides and environmental-friendly organic materials according to storing period and temperature. Korean J. Pestic. Sci. 15: 55-60. (In Korean)
31 Seo, S.-T., Park, J.-H., Lee, J.-S., Han, K.-S. and Cheong, S.-R. 2006. Bacterial fruit blotch of melon caused by Acidovorax avenae subsp. citrulli. Res. Plant Dis. 12: 185-188. (In Korean)   DOI
32 Park, K. Y. 2002. Status and problems of synthesis of nanoparticles by vapor phase method. Theories Appl. Chem. Eng. 8: 1. (In Korean)
33 Park, M. R., Choi, W. S., Yadav, D. R., Kim, S. W., Kim, J. I. and Lee, Y. S. 2015. Antibacterial effect of nickel nanoparticles on Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. J. Agric. Life Environ. Sci. 27: 43-50.
34 Park, S.-J., Kim, B.-J. and Rhee, J. M. 2003. Antibacterial activity of activated carbon fibers containing copper meta. Polymer (Korea) 27: 235-241. (In Korean)
35 Rane, K. K. and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76: 509-512.   DOI
36 Roh, J.-Y., Sim, S. J., Yi, J., Park, K., Chung, K. H., Ryu, D.-Y. et al. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 43: 3933-3940.   DOI
37 Sharma, V. K., Yngard, R. A. and Lin, Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145: 83-96.   DOI
38 Song, J., Chu, Y., Liu, Y., Li, L. and Sun, W. 2008. Room-temperature controllable fabrication of silver nanoplates reduced by aniline. Chem. Commun. (Camb) 10: 1223-1225.