• Title/Summary/Keyword: Weissella

Search Result 123, Processing Time 0.026 seconds

Changes in microbial community and physicochemical characterization of Makgeolli during fermentation by yeast as a fermentation starter (효모 첨가 유무에 따른 막걸리의 발효 중 미생물 군집 및 이화학적 특성 변화)

  • Choi, Ji-Hae;Lim, Bo-Ra;Kang, Ji-Eun;Kim, Chan-Woo;Kim, Young-Soo;Jeong, Seok-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.529-537
    • /
    • 2020
  • This study was carried out to confirm changes in the microbial community and physicochemical characteristics of Korean traditional Makgeolli during fermentation by yeast as a fermentation starter. We demonstrate that the microbial community during fermentation affects the quality of Makgeolli. At the species level, Pediococcus pentosaceus, Weissella confusa, Pantoea vagans, and Lactobacillus graminis were dominant on fermentation mix, after 1-2 days, in the control group without yeast treatment. Acid production in the control group was higher than that in the yeast-treated group. P. pentosaceus was dominant throughout the fermentation process, and the proportion of P. vagans remarkably decreased following yeast addition. Considering quality characteristics, the alcohol content rapidly increased after yeast addition, and the lactic acid content was lower in the yeast-treated group than in the control. These results suggest that the rapid increase in alcohol at the start of fermentation inhibits the growth of lactic acid-producing bacteria. The addition of yeast may contribute to the reduction in the high amount of lactic acid, which can be one of the causes of changes in Makgeolli quality.

Antimicrobial Activities of Nano Metal Hybrid Materials against the Microorganisms Isolated from Cucurbit Seeds (나노 금속복합체의 박과 작물 종자 분리균에 대한 항균효과)

  • Kim, Sang Woo;Gwon, Byeong Heon;Ju, Han Jun;Adhikari, Mahesh;Park, Mi-ri;Song, Seok-Kyun;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.179-187
    • /
    • 2019
  • This study was carried out to test the antimicrobial activities of nano metal hybrid materials produced by plasma technologies (radio frequency-thermal plasma system and direct current sputtering system) against microbes isolated from cucurbit (watermelon, pumpkin, and gourd) seeds. Eight different nano metal hybrid materials and four carriers were tested against five different fungal and ten different bacterial isolates in vitro. Among the tested nano metal hybrid material, Brass/CaCO3 (1,000 ppm) exhibited 100% antimicrobial effect against all the five tested fungi. However, nano metal hybrid material Brass/CaCO3 (1,000 ppm) inhibited only four bacterial isolates, Weissella sp., Rhodotorula mucilaginosa, Burkholderia sp., and Enterococcus sp. at 100% level, and did not inhibited other six bacterial isolates. Nano metal hybrid material graphite-nickel (G-Ni) showed 100% inhibition rate against Rhizopus stolonifer and 52.94-71.76% inhibition rate against four different fungal isolates. Nano metal hybrid material G-Ni did not show any inhibition effects against tested ten bacterial isolates. In summary, among the tested eight different nano metal hybrid materials and four carriers, Brass/CaCO3 showed inhibition effects against five fungal isolates and four bacterial isolates, and G-Ni showed variable inhibition effects (52.94-100%) against five fungal isolates and did not show any inhibition effects against all the bacterial isolates.

Isolation and characterization of lactic acid bacteria for use as silage additives (사일리지 제조를 위한 유산균 탐색 및 특성연구)

  • Ro, Yu-Mi;Lee, Gwan-Hyeong;Park, InCheol;Kim, Wan-Gyu;Han, Byeong-Hak;You, Jaehong;Ahn, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.444-454
    • /
    • 2016
  • Sixteen lactic acid bacterial strains were isolated from silage and cow dung samples, and characterized to identify their potential as silage additives. They were identified as the members of the genera Lactobacillus, Enterococcus, and Weissella, and clustered into nine groups based on the sequences of the genes for 16S rRNA, RNA polymerase alpha subunit, 60-kDa heat shock protein, and phenylalanyl-tRNA synthase alpha subunit. Among them, the three strains which were genetically similar to L. plantarum showed the fastest growth and pH decrease in MRS and rye extract media, the highest numbers of available carbohydrates, and the widest ranges of pH, temperature, and salinity for growth. In addition, they showed no amplified DNA products in the PCR examination targeting the genes for the production of biogenic amines, and the MRS media where they had been cultured showed relatively high inhibition effect against the growth of silage-spoiling microorganisms, including fungi, yeast, and clostridia. The results suggest that these strains are good candidates for silage additives. However, the rye extract media where the lactic acid bacteria had been cultured had no effect on or stimulated the growth of the silage-spoiling microorganisms, and the causes must be established for the practical use of the lactic acid bacteria as silage additives.

Analysis of Microbial Diversity in Nuruk Using PCR-DGGE (PCR-DGGE를 이용한 누룩에서의 미생물 다양성 분석)

  • Kwon, Seung-Jik;Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2012
  • Nuruk plays a significant role in the flavor and quality of Takju and Yakju, which are produced through saccharification and alcohol fermentation by various microorganisms. In this study, we identified microbial strains isolated from a plate count and PCR-denaturing gradient gel electrophoresis (DGGE) analysis targeting the 16S and 28S rRNA genes, in order to characterize bacterial and fungal diversity in Sansung Nuruk. The numbers of bacteria and fungi in Nuruk were $1.5{\times}10^9$ CFU/g and $2.2{\tims}10^8$ CFU/g, respectively. The 16S rRNA gene sequence indicated that the predominant bacteria in the isolates and PCR-DGGE profile of Nuruk were Kocuria spp., Pantoea spp., Lactobacillus spp., Pediococcus spp., Weissella spp., Staphylococcus spp., endophytic bacterium, uncultured Gamma-proteobacteria, uncultured Cyanobacteria, and Actinobacteria. Dominant bacteria from the PCR-DGGE profile were Pediococcous pentosaceus and uncultured Cyanobacteria. The 28S rRNA gene sequence indicated the predominant fungi in the isolates and PCR-DGGE profile to be Trichomonascus spp. Pichia spp., Torulaspora spp., Wickerhamomyces spp., Sacharomycopsis spp., Lichtheimia spp., Mucor spp., Rhizopus spp. Aspergillus spp., and Cladosporium spp. Dominant fungi from the PCR-DGGE profile were Pichia kudriavzevii and Aspergillus oryzae. The PCR-DGGE technique was used for the first time in this study to assess a microbial community in Nuruk and proved to be an effective protocol for profiling microbial diversity.

Characteristics of Takju (a Cloudy Korean Rice Wine) Prepared with Nuruk (a Traditional Korean Rice Wine Fermentation Starter), and Identification of Lactic Acid Bacteria in Nuruk (시판 전통누룩의 젖산균 분리동정과 제조단양주의 품질특성)

  • Park, Ji-Hee;Chung, Chang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.153-164
    • /
    • 2014
  • Five takju prepared using four types of nuruk (a traditional Korean fermentation starter made of malted wheat; non-cooked, naturally inoculated) labeled SH, SS, JJ, and SJ, and one type of koji (cooked, inoculated with an inoculum) labeled MN, were compared. Titratable acidity, pH, sugars, ethanol, amino acids, organic acids, and microbial changes in samples were measured, and the sensory properties were evaluated. Titratable acidity, alcohol, and organic acid content increased as sugar contents decreased. The overall ethanol concentration of all takju increased over time, reaching a maximum of 13.08-14.96% (w/v) at 7-21 days. The total amino acid contents of takju prepared with nuruk, except for one (SJ), were higher than the takju prepared with koji (MN). Lactic acid bacteria were also isolated from the starters. Sequence analysis of 16S rRNA genes (500 - 600 bp) of 223 isolates revealed that the major strains were in the genera of Leuconostoc, Weissella, Pediococcus, and Lactobacillus.

Evaluation of Biological Activities of Fermented Hizikia fusiformis Extracts (톳 발효 추출물의 생리활성 검증)

  • Park, Seong Hwan;Lee, Sol Jee;Jeon, MyeongJeong;Kim, Seo-Yeon;Mun, Ok-Ju;Kim, Mihyang;Kong, Chang-Suk;Lee, Dong-Geun;Yu, Ki Hwan;Kim, Yuck Young;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.304-310
    • /
    • 2014
  • Antioxidative, immunostimulating, and antihypertensive activities of hot water extracts of fermented Hizikia fusiformis were evaluated. Fermentation with lactic acid bacteria generally increased the biological activities of H. fusiformis. Fermentation with isolated Weissella sp. SH-1 resulted in 13.83-62.15% DPPH radical scavenging activity and 34.90-59.25% SOD-like activity. The maximal inhibition of ACE was 82.25%, and the maximal reduction in NO production was 46.53%. Fermentation with Lactobacillus casei resulted in 11.98-72.84% DPPH radical scavenging activity and 14.17-33.62% of SOD-like activity. The maximal inhibition of ACE was 73.31%, and the maximal reduction in NO production was 65.20%. These results hint at the applicability of fermentation with lactic acid bacteria to improve the diverse biological activities of H. fusiformis and to develop functional materials or foods.

A Comparative Study between Microbial Fermentation and Non-Fermentation on Biological Activities of Medicinal Plants, with Emphasis on Enteric Methane Reduction (천연 약용식물의 미생물 발효를 통한 장내 메탄 생성 억제 효과 비교 연구)

  • Lee, A-Leum;Park, Hae-Ryoung;Kim, Mi-So;Cho, Sangbuem;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.801-813
    • /
    • 2014
  • A study was conducted to improve the biological activity of two medicinal plants, Eucommia ulmoides Oliv. and Glycyrrhiza uralensis, by fermentation. The biological activity was assessed by determining antibacterial, antioxidant and antimethanogenic properties. Fermentation was achieved by adding the plant materials in MRS broth at 10% (w/v) and different starter cultures at 1% (v/v). Condition for fermentation were incubation temperature of $30^{\circ}C$ and agitation at 150 rpm for 48 h. Six starter cultures, Weissella confusa NJ28 (Genbank accession number KJ914897), Weissella cibaria NJ33 (Genbank accession number KJ914898), Lactobacillus curvatus NJ40 (Genbank accession number KJ914899), Lactobacillus brevis NJ42 (Genbank accession number KJ914900), Lactobacillus plantarum NJ45 (Genbank accession number KJ914901) and Lactobacillus sakei NJ48 (Genbank accession number KJ914902) were used. Antibacterial activity was observed in L. curvatus NJ40 and L. plantarum NJ45 only as opposed to other treatments, including the non-fermented groups, which showed no antibacterial activity. Both plants showed antioxidant activity, although E. ulmoides Oliv. had lower activity than G. uralensis. However, fermentation by all strains significantly improved (p<0.05), antioxidant activity in both plants compared to non-fermented treatment. Six treatments were based on antibacterial activity results, selected for in vitro rumen fermentation; 1) non-fermented E. ulmoides, 2) fermented E. ulmoides NJ40, 3) fermented E. ulmoides NJ45, 4) non-fermented G. uralensis, 5) fermented G. uralensis NJ40, 6) fermented G. uralensis NJ45. A negative control was also added, making a total of 7 treatments for the in vitro experiment. Medicinal plant-based treatments significantly improved (p<0.05) total volatile fatty acid (VFA) concentration. Significant methane reduction per mol of VFA were observed in G. uralensis (p<0.05). Based on the present study, fermentation improves the biological activity of E. ulmoides Oliv. and G. uralensis. Fermented G. uralensis could also be applied as an enteric methane mitigating agent in ruminant animals.

Development of an Environmental Friend Additive Using Antibacterial Natural Product for Reducing Enteric Rumen Methane Emission (항균활성 천연물질을 이용한 반추위 메탄저감용 친환경 첨가제 개발)

  • Lee, A-Leum;Yang, Jinho;Cho, Sang-Buem;Na, Chong-Sam;Shim, Kwan-Seob;Kim, Young-Hoon;Bae, Gui-Seck;Chang, Moon-Baek;Choi, Bitna;Shin, Su-Jin;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.491-502
    • /
    • 2014
  • The present study was conducted to investigate effective starter culture to improve biological activity of Asarum sieboldii. Antibacterial activity, antioxidant activity and reduction of enteric rumen methane production were used as criterions for biological activity. Ground A. sieboldii was added in MRS broth at 10% (w/v) and fermented by different starter cultures. Weissella confusa NJ28, Weissella cibaria NJ33, Lactobacillus curvatus NJ40, Lactobacillus brevis NJ42, Lactobacillus plantarum NJ45 and Lactobacillus sakei NJ48 were used for starter culture strains. Each starter culture was inoculated with 1% (v/v) ratio and fermentation was performed at $30^{\circ}C$ with agitation (150 rpm) for 48 h. MRS broth for the control was employed without starter culture. Then the fermentation growth was dried and extracted using ethyl alcohol. The growth of starter culture was detected at NJ40, NJ42, NJ45 and NJ48. And the highest cell growth was found in NJ40. Antibacterial activity against to Staphylococcus aureus, Listeria monocytogens, Mannheimia haemolytica and Salmonella gallinarum were observed in the extract fermented by NJ40 and NJ45. All treatments showed antioxidant activities, however, there were no significant differences (p>0.05). In in vitro rumen fermentation, negative control (NC) and positive control (PC) were assigned to without extract and with non-fermented A. sieboldii extract. Significant suppression of gas productions were detected in positive control and treatments compared to negative control (p<0.05). However, total volatile fatty acid production was not suppressed. Significant methane reduction per total volatile fatty acid productions were found in positive control and NJ45 treatment (p<0.05). The present study suggested a fermentation of A. sieboldii using NJ45 strain could improve its biological activity and make possible for its use in bio additive for enteric rumen methane mitigation without suppression of animal productivity.

Physiological Effects of Lactic Acid Bacteria Treated Condiments on Dolsan Leaf Mustard Kimchi (돌산갓김치 제조를 위한 유산균 처리한 조미료의 생리적 효과)

  • Oh, SunKyung;Shen, Jing;Choi, MyeongRak
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2021
  • This study evaluated the changes in the pH, acidity, lactobacillus and total bacterial counts, and sensory evaluation of Dolsan leaf mustard Kimchi (DLMK) after incubation for 50 days at 4℃ in the presence of one of three lactic acid bacteria (LAB); Weissella kimchii (W.k.), Leuconostoc gelidum (L.g.), and Leuconostoc mesenteroides (L.m.). The pH ranged from 5.12 to 5.62 and the acidity varied from 0.62% to 3.77% upon the addition of a 2% salt solution to the DLMK prepared using the three LAB. Overall, the LAB counts decreased rapidly from day 10 to day 20 of fermentation, whereas the total bacterial count decreased during the 50 days of fermentation. The pH and acidity in the DLMK ranged from 5.22 to 5.61 and from 0.91% to 4.41%, respectively, in the absence of the 2% salt solution. The LAB count decreased until 20 days and then increased thereafter, whereas the total bacterial count decreased until 20 days and then increased until 50 days. The condiments treated with or without the 2% salt solution showed a gradual decrease in appearance, flavor, salinity, hot taste, and overall acceptability as fermentation time increased. In addition, DPPH radical scavenging activity was high for 2% W. k. and 2% L. m., and ACE inhibitory activity was the highest, at 70.38% in the marinated condiments fermented at 10℃ for 8 days. Thus, this condiment production method may be useful for DLMK and other Kimchi types.

The Growth-Promoting Effect of Pomegranate Concentrates on Lactic Acid Bacteria and Their Application to Yogurt (석류 농축액의 유산균에 대한 성장촉진효과와 요구르트의 적용)

  • Yun Jeong Go;Woan Sub Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.76-85
    • /
    • 2023
  • This study investigated the effect of the addition of pomegranate concentrate to yogurt on the growth of pathogenic and lactic acid bacteria. The concentration of the MRS broth was adjusted to one-half and used for an experiment. Pomegranate concentrate was added at concentrations of 4%, 2%, 1%, and 0.5%, which significantly promoted the growth of Lacto-coccus cremoris, Weissella cibaria, Weissella paramesenteroides, Lactobacillus plantarum, Lactobacillus acidophilus, Streptococcus thermophillus, Lactobacillus bulgaricus, and Lactobacillus lactis. The growth of lactic acid bacteria increased with higher concentrations of pomegranate. However, the addition of pomegranate concentrate inhibited the growth of Escherichia coli KCCM11587, E. coli KCCM11591, E. coli KCCM11596, and E. coliKCCM11600. Yogurt with added pomegranate concentrate demonstrated optimal conditions compared to that of the control without the addition. Particularly, the viable cell count of lactic acid bacteria was significantly higher in the yogurt with pomegranate concentrate. Furthermore, the viability of the lactic acid bacteria in the yogurt with pomegranate concentrate was higher than that of the control without the addition of concentrate during storage.