DOI QR코드

DOI QR Code

Development of an Environmental Friend Additive Using Antibacterial Natural Product for Reducing Enteric Rumen Methane Emission

항균활성 천연물질을 이용한 반추위 메탄저감용 친환경 첨가제 개발

  • 이아름 (전북대학교 동물자원과학과) ;
  • 양진호 (전북대학교 동물자원과학과) ;
  • 조상범 (전북대학교 동물자원과학과) ;
  • 나종삼 (전북대학교 동물생명공학과) ;
  • 심관섭 (전북대학교 동물생명공학과) ;
  • 김영훈 (전북대학교 동물자원과학과) ;
  • 배귀석 (중앙대학교 생명자원공학부) ;
  • 장문백 (중앙대학교 생명자원공학부) ;
  • 최빛나 (전북대학교 동물자원과학과) ;
  • 신수진 (전북대학교 동물자원과학과) ;
  • 최낙진 (전북대학교 동물자원과학과)
  • Received : 2014.08.13
  • Accepted : 2014.08.21
  • Published : 2014.09.30

Abstract

The present study was conducted to investigate effective starter culture to improve biological activity of Asarum sieboldii. Antibacterial activity, antioxidant activity and reduction of enteric rumen methane production were used as criterions for biological activity. Ground A. sieboldii was added in MRS broth at 10% (w/v) and fermented by different starter cultures. Weissella confusa NJ28, Weissella cibaria NJ33, Lactobacillus curvatus NJ40, Lactobacillus brevis NJ42, Lactobacillus plantarum NJ45 and Lactobacillus sakei NJ48 were used for starter culture strains. Each starter culture was inoculated with 1% (v/v) ratio and fermentation was performed at $30^{\circ}C$ with agitation (150 rpm) for 48 h. MRS broth for the control was employed without starter culture. Then the fermentation growth was dried and extracted using ethyl alcohol. The growth of starter culture was detected at NJ40, NJ42, NJ45 and NJ48. And the highest cell growth was found in NJ40. Antibacterial activity against to Staphylococcus aureus, Listeria monocytogens, Mannheimia haemolytica and Salmonella gallinarum were observed in the extract fermented by NJ40 and NJ45. All treatments showed antioxidant activities, however, there were no significant differences (p>0.05). In in vitro rumen fermentation, negative control (NC) and positive control (PC) were assigned to without extract and with non-fermented A. sieboldii extract. Significant suppression of gas productions were detected in positive control and treatments compared to negative control (p<0.05). However, total volatile fatty acid production was not suppressed. Significant methane reduction per total volatile fatty acid productions were found in positive control and NJ45 treatment (p<0.05). The present study suggested a fermentation of A. sieboldii using NJ45 strain could improve its biological activity and make possible for its use in bio additive for enteric rumen methane mitigation without suppression of animal productivity.

본 연구는 천연물질에서 유래한 반추위 메탄저감용 친환경 첨가제 개발을 위해 각기 다른 종균을 이용하여 발효한 세신 추출물의 항균활성, 항산화활성 및 in vitro 반추위 발효시험을 체계적으로 실시하였다. 접종된 균주들의 성장효율을 알아보기 위해 실시한 생균수측정 결과 L. curvatus NJ40 균주에서 유의적으로 높은 균주성장을 나타냈다(p<0.05). 항균활성측정 결과는 대조구 대비 L. curvatus NJ40 및 L. plantarum NJ45 균주와 발효된 세신 추출물이 병원균에 대한 항균효과를 나타내는 것으로 조사되었다. In vitro 반추위 발효실험에 세신 및 발효 세신 추출물을 적용한 결과, 휘발성 지방산 생성량 대비 반추위 메탄 저감효과가 나타났다. 특히 반추위 미생물 활력 및 사료이용 효율을 대표할 수 있는 휘발성 지방산 생성효율에 대한 부정적 효과 없이, 오히려 휘발성지방산 생성효율을 향상시키면서 반추위 메탄 저감효과를 가져올 수 있는 것으로 나타났다.

Keywords

References

  1. Aymerich, T., B. Martin, M. Garriga, and M. Hugas. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Appl. Environ. microbiol. 69: 4583-4594. https://doi.org/10.1128/AEM.69.8.4583-4594.2003
  2. Bruinsma, J. 2003. World agriculture: Towards 2015/2030: An FAO perspective. Rome:Earthscan.
  3. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132.
  4. Choi, J. H., M. H. Yu, E. Y. Hwang, and I. S. Lee. 2009. Effect of Rosmarinus officinalis L. fractions on antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) and resistant genes regulation. J. Korean Soc. Food. Sci. Nutr. 38: 541-547.
  5. Erwin, E., G. Marco, and E. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy. Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  6. Grainger, C. and K. Beauchemin. 2011. Can enteric methane emissions from ruminants belowered without lowering their production?. Anim. Feed. Sci. Technol. 166: 308-320.
  7. Ham, Y. J. 2014. A study for the fermentation of medicinal plant to develop natural skin cosmetics. Ph.D. Thesis. Konkuk University. Seoul.
  8. Hashimoto, K., T. Yanagisawa, Y. Okui, Y. Ikeya, M. Maruno, and T. Fujita. 1994. Studies on Anti-Allergic Components in the Roots of Asiasarum sieboldi. Planta. Med. 60: 124-127. https://doi.org/10.1055/s-2006-959432
  9. Hiltner, P. and B. Dehority. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. microbiol. 46: 642-648.
  10. Hong, K. P. 2011. Optimum conditions for production of fermented grapefruit extract using Leuconostoc mesenteroides KCTC3505. J. East Asian Soc. Dietary. Life. 21: 661-668.
  11. Hristov, A. and J. Ropp. 2003. Effect of dietary carbohydrate composition and availability on utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows. J. Dairy. Sci. 86: 2416-2427. https://doi.org/10.3168/jds.S0022-0302(03)73836-3
  12. Ji, Y. J., J. W. Lee, and I. S. Lee. 2007. Antimicrobial effect of medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). J. Life. Sci. 17: 412-419. https://doi.org/10.5352/JLS.2007.17.3.412
  13. Juan, M. Y. and C.C. Chou. 2010. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbial. 27: 586-591. https://doi.org/10.1016/j.fm.2009.11.002
  14. Kim, N. M., J. W. Lee, J. H. Do, and J. W. Yang. 2003. Effects of the fermentation periods on the qualities and fuctionalities of the fermentation broth of wild vegetables. Korean. J. Food Sci. Technol. 35: 272-279.
  15. McDougall, E. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43: 99-109.
  16. Moon, Y. D. 1993. Studies on microbiological and physicochemical properties of fermented sausages manufactured with Lactobacillus curvatus K12-3. Ph.D. Thesis. Kunkuk University. Seoul.
  17. Oltjen, R. R. 1969. Effects of feeding ruminants non-protein nitrogen as the only nitrogen source. J. Anim. Sci. 28: 673-681.
  18. Quang, T. H., N. T. T. Ngan, C. V. Minh, P. V. Kiem, B. H. Tai, N. P. Thao, S. B. Song, and Y. H. Kim. 2012. Anti-inflammatory and PPAR transactivational effects of secondary metabolites from the roots of Asarum sieboldii. Bioorg. Med. Chem. Lett. 22: 2527-2533. https://doi.org/10.1016/j.bmcl.2012.01.136
  19. Satter, L. and L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Brit. J. Nutr. 32: 199-208. https://doi.org/10.1079/BJN19740073
  20. Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, and C. Rice. 2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 118: 6-28. https://doi.org/10.1016/j.agee.2006.06.006
  21. Stiles, D., E. Bartley, R. e. Meyer, C. Deyoe, and H. Pfost. 1970. Feed Processing. VII. Effect of an expansion-processed mixture of grain and urea (starea) on rumen metabolism in cattle and on urea toxicity. J. Dairy. Sci. 53: 1436-1447. https://doi.org/10.3168/jds.S0022-0302(70)86412-8
  22. Tilley, J. and R. Terry. 1963. A two stage technique for the in vitro digestion of forage crops. J. British Grassland Soc. 18: 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x