Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6060

Isolation and characterization of lactic acid bacteria for use as silage additives  

Ro, Yu-Mi (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Lee, Gwan-Hyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Park, InCheol (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Kim, Wan-Gyu (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Han, Byeong-Hak (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
You, Jaehong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Ahn, Jae-Hyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Publication Information
Korean Journal of Microbiology / v.52, no.4, 2016 , pp. 444-454 More about this Journal
Abstract
Sixteen lactic acid bacterial strains were isolated from silage and cow dung samples, and characterized to identify their potential as silage additives. They were identified as the members of the genera Lactobacillus, Enterococcus, and Weissella, and clustered into nine groups based on the sequences of the genes for 16S rRNA, RNA polymerase alpha subunit, 60-kDa heat shock protein, and phenylalanyl-tRNA synthase alpha subunit. Among them, the three strains which were genetically similar to L. plantarum showed the fastest growth and pH decrease in MRS and rye extract media, the highest numbers of available carbohydrates, and the widest ranges of pH, temperature, and salinity for growth. In addition, they showed no amplified DNA products in the PCR examination targeting the genes for the production of biogenic amines, and the MRS media where they had been cultured showed relatively high inhibition effect against the growth of silage-spoiling microorganisms, including fungi, yeast, and clostridia. The results suggest that these strains are good candidates for silage additives. However, the rye extract media where the lactic acid bacteria had been cultured had no effect on or stimulated the growth of the silage-spoiling microorganisms, and the causes must be established for the practical use of the lactic acid bacteria as silage additives.
Keywords
antimicrobial activity; lactic acid bacteria; silage;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Jeong, J.Y., Lim, Y.T., and Seok, H.B. 2000. Studies on the characteristics of Lactobacillus plantarum isolated from oat silage. Korean J. Vet. Res. 40, 325-332.
2 Jin, L., Duniere, L., Lynch, J.P., McAllister, T.A., Baah, J., and Wang, Y. 2015. Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silage. Anim. Feed Sci. Tech. 207, 62-74.   DOI
3 Kang, T.W., Adesogan, A.T., Kim, S.C., and Lee, S.S. 2009. Effects of an esterase-producing inoculant on fermentation, aerobic stability, and neutral detergent fiber digestibility of corn silage. J. Dairy Sci. 92, 732-738.   DOI
4 Kim, J.G., Ham, J.S., Chung, E.S., Park, H.S., Lee, J.K., Jung, M.W., Choi, K.C., Jo, N.C., and Seo, S. 2009. Evaluation of fermentation ability of microbes for whole crop barley silage inoculant. J. Korean Grassl. Forage Sci. 29, 235-244.   DOI
5 Kim, J.G., Ham, J.S., Chung, E.S., Seo, S., and Park, H.S. 2010. Evaluation of fermentation ability of microbes for corn silage incoulant. J. Korean Grassl. Forage Sci. 30, 333-342.   DOI
6 Kim, J.G., Ham, J.S., Chung, E.S., Yoon, S.H., Kim, M.J., Park, H.S., Lim, Y.C., and Seo, S. 2008. Evaluation of fermentation ability of microbes for whole crop rice silage incoulant. J. Korean Grassl. Forage Sci. 28, 229-236.   DOI
7 Kleinschmit, D.H. and Kung Jr, L. 2006. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 89, 4005-4013.   DOI
8 Liu, S., Bischoff, K.M., Anderson, A.M., and Rich, J.O. 2016. Novel feruloyl esterase from Lactobacillus fermentum NRRL B-1932 and analysis of the recombinant enzyme produced in Escherichia coli. Appl. Environ. Microbiol. 82, 5068-5076.   DOI
9 MAFRA. 2016. A news release: A public demonstration of roughage harvest in Saemangeum and a creation of a boom in the production and utilization of roughage. Ministry of Agriculture, Food, and Rural Affairs.
10 Magnusson, J. and Schnurer, J. 2001. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67, 1-5.   DOI
11 Magnusson, J., Strom, K., Roos, S., Sjogren, J., and Schnurer, J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219, 129-135.   DOI
12 Marcinakova, M., Laukova, A., Simonova, M., Strompfova, V., Korenekova, B., and Nad, P. 2008. A new probiotic and bacteriocin-producing strain of Enterococcus faecium EF9296 and its use in grass ensiling. Czech J. Anim. Sci. 53, 336-345.
13 Miyamoto, M., Seto, Y., Hai Hao, D., Teshima, T., Bo Sun, Y., Kabuki, T., Bing Yao, L., and Nakajima, H. 2005. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables 'Suan cai' in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst. Appl. Microbiol. 28, 688-694.   DOI
14 Todorov, S.D. 2008. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz. J. Microbiol. 39, 178-187.   DOI
15 Saarisalo, E., Skytta, E., Haikara, A., Jalava, T., and Jaakkola, S. 2007a. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 102, 327-336.
16 Saarisalo, E., Skytta, E., Haikara, A., Jalava, T., and Jaakkola, S. 2007b. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 102, 327-336.
17 Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
18 Weinberg, Z.G. and Muck, R.E. 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 19, 53-68.
19 Tohno, M., Kobayashi, H., Nomura, M., Kitahara, M., Ohkuma, M., Uegaki, R., and Cai, Y. 2012. Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Anim. Sci. J. 83, 111-120.   DOI
20 Valan Arasu, M., Jung, M.W., Ilavenil, S., Kim, D.H., Park, H.S., Park, J.W., Al-Dhabi, N.A., and Choi, K.C. 2014. Characterization, phylogenetic affiliation and probiotic properties of high cell density Lactobacillus strains recovered from silage. J. Sci. Food Agr. 94, 2429-2440.   DOI
21 Addah, W., Baah, J., Okine, E.K., and McAllister, T.A. 2012. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle1. J. Anim. Sci. 90, 1541-1552.   DOI
22 Avonts, L., Uytven, E.V., and Vuyst, L.D. 2004. Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J. 14, 947-955.   DOI
23 Blaiotta, G., Fusco, V., Ercolini, D., Aponte, M., Pepe, O., and Villani, F. 2008. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation. Appl. Environ. Microbiol. 74, 208-215.   DOI
24 Cai, Y., Benno, Y., Ogawa, M., and Kumai, S. 1999. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J Dairy Sci. 82, 520-526.   DOI
25 Cheli, F., Campagnoli, A., and Dell'Orto, V. 2013. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Tech. 183, 1-16.   DOI
26 Duniere, L., Sindou, J., Chaucheyras-Durand, F., Chevallier, I., and Thevenot-Sergentet, D. 2013. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Tech. 182, 1-15.   DOI
27 Wilkinson, J.M. and Davies, D.R. 2013. The aerobic stability of silage: key findings and recent developments. Grass Forage Sci. 68, 1-19.   DOI
28 Zou, Y., Liu, F., Fang, C., Wan, D., Yang, R., Su, Q., Yang, R., and Zhao, J. 2013. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage. Int. J. Syst. Evol. Microbiol. 63, 1817-1823.   DOI
29 Cho, T.Y., Han, G.H., Bahn, K.N., Son, Y.W., Jang, M.R., Lee, C.H., Kim, S.H., Kim, D.B., and Kim, S.B. 2006. Evaluation of biogenic amines in Korean commercial fermented foods. Korea J. Food Sci. Technol. 38, 730-737.
30 Dave, R.I. and Shah, N.P. 1997. Characteristics of bacteriocin produced by Lactobacillus acidophilus LA-1. Int. Dairy J. 7, 707-715.   DOI
31 Fadhlaoui-Zid, K., Curiel, J.A., Landeta, G., Fattouch, S., Reveron, I., de las Rivas, B., Sadok, S., and Munoz, R. 2012. Biogenic amine production by bacteria isolated from ice-preserved sardine and mackerel. Food Control. 25, 89-95.   DOI
32 Falguni, P., Shilpa, V.I.J., and Mann, B. 2010. Production of proteinaceous antifungal substances from Lactobacillus brevis NCDC 02. Int. J. Dairy Technol. 63, 70-76.   DOI
33 Filya, I. 2003. The Effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 86, 3575-3581.   DOI
34 Gevers, D., Huys, G., and Swings, J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205, 31-36.   DOI
35 Hammes, W.P. and Hertel, C. 2009. Genus I. Lactobacillus, pp. 465-511. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (eds.), Bergey's manual of systematic bacteriology, vol. 3: the, The Firmicutes, Springer, New York, USA.