• 제목/요약/키워드: Weighted combination

검색결과 183건 처리시간 0.023초

Linear Combination of Weighted Order Statistic 필터의 분석과 구현 (Analysis and Implementation of Linear Combination of Weighted Order Statistic Filters)

  • 송종환;이용훈
    • 전자공학회논문지B
    • /
    • 제31B권2호
    • /
    • pp.21-27
    • /
    • 1994
  • Linear combination of weighted order statistic(LWOS) filters, which is an extension of stack filters, can represent any Boolean function(BF) or its extension. Which is called the extended BF(EBF). In this paper, we present a procedure for finding an LWOS filter of the simplest type from LWOS filters which are equivalent to a given BF or EBF. In addition, a property that is useful for implementing an LWOS filter is derived and an algorithm for LWOS filtering is presented.

  • PDF

상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측 (Protein-Protein Interaction Prediction using Interaction Significance Matrix)

  • 장우혁;정석훈;정휘성;현보라;한동수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.851-860
    • /
    • 2009
  • 최근 계산을 통한 단백질 상호작용 예측 기법 중, 단백질 쌍이 포함하고 있는 도메인들 사이의 관계에 중점을 둔 도메인 정보 기반 예측 기법들이 다양하게 제안되고 있다. 하지만, 다수의 도메인 쌍들이 상호작용에 기여하는 정도를 정밀하게 반영하는 계산 기법은 드문 실정이다. 본 논문에서는 단백질 상호작용에 있어 도메인 조합 쌍의 상호작용 영향력을 수치화하여 반영한 상호작용 중요도 행렬을 고안하고 이를 기반으로 한 단백질 상호작용 예측 시스템을 구현한다. 일반적인 도메인 조합 기법과 달리, 상호작용 중요도 행렬에서는 상호작용을 위한 도메인간의 협업 확률이 고려된 Weighted 도메인 조합과, 다수의 Weighted 도메인 조합 중 실제 상호작용 주체가 될 확률을 도메인 조합 쌍의 힘(Domain Combination Pair Power, DCPPW)으로 수치화한다. DIP과 IntAct에서 얻어온 S. cerevisiae의 단백질 상호작용 데이터와 Pfam-A 도메인 정보를 사용한 정확도 검증 결과, 평균 63%의 민감도와 94%의 특이도를 확인하였으며, 학습집단의 증가에 따른 안정적인 예측 정확도 향상을 보였다. 본 논문에서 구현한 예측 시스템과 학습 데이터는 웹(http://code.google.com/p/prespi)을 통하여 내려 받을 수 있다.

이미지 시퀀스 얼굴표정 기반 감정인식을 위한 가중 소프트 투표 분류 방법 (Weighted Soft Voting Classification for Emotion Recognition from Facial Expressions on Image Sequences)

  • 김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1175-1186
    • /
    • 2017
  • Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.

A Study on the Optimum Scheme for Determination of Operation Time of Line Feeders in Automatic Combination Weighers

  • Keraita James N.;Kim Kyo-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1567-1575
    • /
    • 2006
  • In an automatic combination weigher, the line feeders distribute the product to several weighing hoppers. The ability to supply appropriate amount of product to the weighing hoppers for each combination operation is crucial for the overall performance. Determining the right duration of operating a line feeder to supply a given amount of product becomes very challenging in case of products which are irregular in volume or specific gravity such as granular secondary processed foods. In this research, several schemes were investigated to determine the best way for a line feeder to approximate the next operating time in order to supply a set amount of irregular goods to the corresponding weighing hopper. Results obtained show that a weighted least squares method (WLS) employing 10 data points is the most effective in determining the operating times of line feeders.

On Combination of Several Weighted Logrank Tests

  • Park, Sang-Gue;Jeong, Gyu-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.213-220
    • /
    • 1995
  • We consider a class of the weighted logrank tests and 4 types of weights in this class. We propese a test based on the maximum of 4 weighted logrank statistics and suggest a simulation techniqur to obtain the p-value of proposed test. It is shown through the simulation studies that the proposed test is robust and has reasonably good powers comparing with the well known efficient tests.

  • PDF

이동 에드-혹 네트워크에서 조합 가중치 클러스터링 알고리즘에 의한 클러스터 그룹 멀티캐스트 (Cluster Group Multicast by Weighted Clustering Algorithm in Mobile Ad-hoc Networks)

  • 박양재;이정현
    • 전자공학회논문지CI
    • /
    • 제41권3호
    • /
    • pp.37-45
    • /
    • 2004
  • 본 논문에서는 이동 에드-혹 네트워크에서 조합가중치 클러스터링 알고리즘을 적용하여 강건하고 신뢰성 있는 클러스터 기반의 그룹 멀티캐스트 방식을 제안한다. 에드-혹 네트워크는 고정된 통신 하부 구조의 도움 없이 이동 단말기로만 구성된 무선 네트워크이다. 제한된 대역폭과 높은 이동성으로 인하여 에드-혹 네트워크에서의 라우팅 프로토콜은 강건하고, 간단하면서 에너지 소비를 최소화하여야 한다. WCGM(Weighted Cluster Group Multicast)방식은 조합 가중치 다중 클러스터 기반 구조를 이용하고 기존의 FGMP(Forwarding Group Multicast Protocol)방식의 장점인 제한적인 플러딩에 의한 데이터 전달방식은 유지하면서 클러스터 헤드 선출 시 조합가중치를 적용한다. 이것은 안정적이며 강건한 데이터 전달 구조를 가지기 때문에 데이터 전달 구조를 유지하기 위한 오버헤드(Overhead)와 데이터 전달을 위한 오버헤드를 모두 줄이는 효과를 시뮬레이션을 통하여 검증하였다.

퍼지 가중 평균을 이용한 다중 센서 데이타 융합 (Multisensor Data Combination Using Fuzzy Weighted Average)

  • 김완주;고중협;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.383-386
    • /
    • 1993
  • In this paper, we propose a sensory data combination method by a fuzzy number approach for multisensor data fusion. Generally, the weighting of one sensory data with respect to another is derived from measures of the relative reliabilities of the two sensory modules. But the relative weight of two sensory data can be approximately determined through human experiences or insufficient experimental data without difficulty. We represent these relative weight using appropriate fuzzy numbers as well as sensory data itself. Using the relative weight, which is subjective valuation, and a fuzzy-numbered sensor data, the fuzzy weighted average method is used for a representative sensory data. The manipulation and calculation of fuzzy numbers can be carried out using the Zadeh's extension principle which can be approximately implemented by the $\alpha$-cut representation of fuzzy numbers and interval analysis.

  • PDF

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

Generalized Weighted Linear Models Based on Distribution Functions

  • Yeo, In-Kwon
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • In this paper, a new form of generalized linear models is proposed. The proposed models consist of a distribution function of the mean response and a weighted linear combination of distribution functions of covariates. This form addresses a structural problem of the link function in the generalized linear models. Markov chain Monte Carlo methods are used to estimate the parameters within a Bayesian framework.

  • PDF

A CHARACTERIZATION OF M-HARMONICITY

  • Lee, Jae-Sung
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.113-119
    • /
    • 2010
  • If f is M-harmonic and integrable with respect to a weighted radial measure $\upsilon_{\alpha}$ over the unit ball $B_n$ of $\mathbb{C}^n$, then $\int_{B_n}(f\circ\psi)d\upsilon_{\alpha}=f(\psi(0))$ for every $\psi{\in}Aut(B_n)$. Equivalently f is fixed by the weighted Berezin transform; $T_{\alpha}f = f$. In this paper, we show that if a function f defined on $B_n$ satisfies $R(f\circ\phi){\in}L^{\infty}(B_n)$ for every $\phi{\in}Aut(B_n)$ and Sf = rf for some |r|=1, where S is any convex combination of the iterations of $T_{\alpha}$'s, then f is M-harmonic.