References
- T. Senjyu, H. Takara, K. Uezato, and T. Funabashi, "Onehour- ahead load forecasting using neural network," IEEE Transactions on Power Systems, vol. 17, no. 1, pp. 113-118, 2002. http://dx.doi.org/10.1109/59.982201
- E. E. Elattar, J. Goulermas, and Q. H. Wu, "Electric load forecasting based on locally weighted support vector regression," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 4, pp. 438-447, 2010. http://dx.doi.org/10.1109/TSMCC.2010.2040176
- S. Fan and L. Chen, "Short-term load forecasting based on an adaptive hybrid method," IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 392-401, 2006. http://dx.doi.org/10.1109/TPWRS.2005.860944
- J. Nagi, K. S. Yap, F. Nagi, S. K. Tiong, and S. K. Ahmed, "A computational intelligence scheme for the prediction of the daily peak load," Applied Soft Computing, vol. 11, no. 8, pp. 4773-4788, 2011. http://dx.doi.org/10.1016/j.asoc.2011.07.005
- B. Wang, N. L. Tai, H. Q. Zhai, J. Ye, J. D. Zhu, and L. B. Qi, "A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting," Electric Power Systems Research, vol. 78, no. 10, pp. 1679-1685, 2008. http://dx.doi.org/10.1016/j.epsr.2008.02.009
- D. J. Trudnowski, W. L. McReynolds, and J. M. Johnson, "Real-time very short-term load prediction for powersystem automatic generation control," IEEE Transactions on Control Systems Technology, vol. 9, no. 2, pp. 254-260, 2001. http://dx.doi.org/10.1109/87.911377
- S. J. Huang and K. R. Shih, "Short-term load forecasting via ARMA model identification including non- Gaussian process considerations," IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 673-679, 2003. http://dx.doi.org/10.1109/TPWRS.2003.811010
- J. F. Chen, W. M. Wang, and C. M. Huang, "Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting," Electric Power Systems Research, vol. 34, no. 3, pp. 187-196, 1995. http://dx.doi.org/10.1016/0378-7796(95)00977-1
- N. Kandil, R. Wamkeue, M. Saad, and S. Georges, "An efficient approach for short term load forecasting using artificial neural networks," International Journal of Electrical Power & Energy Systems, vol. 28, no. 8, pp. 525-530, 2006. http://dx.doi.org/10.1016/j.ijepes.2006.02.014
- T. S. Dillon, S. Sestito, and S. Leung, "Short term load forecasting using an adaptive neural network," International Journal of Electrical Power & Energy Systems, vol. 13, no. 4, pp. 186-192, 1991. http://dx.doi.org/10.1016/0142-0615(91)90021-M
- A. J. R. Reis and A. P. A. da Silva, "Feature extraction via multiresolution analysis for short-term load forecasting," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 189-198, 2005. http://dx.doi.org/10.1109/TPWRS.2004.840380
- R. K. Mehra, "Group method of data handling (GMDH): review and experience," in Proceedings of 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications, New Orleans, LA, 1977, pp. 29-34. http://dx.doi.org/10.1109/CDC.1977.271540
- B. Zhu, C. Z. He, P. Liatsis, and X. Y. Li, "A GMDH-based fuzzy modeling approach for constructing TS model," Fuzzy Sets and Systems, vol. 189, no. 1, pp. 19-29, 2012. http://dx.doi.org/10.1016/j.fss.2011.08.004
- A. G. Ivakhnenko, "Polynomial theory of complex systems," IEEE Transactions on Systems, Man, and Cybernetics, vol. 1, no. 4, pp. 364-378, 1971. http://dx.doi.org/ 10.1109/TSMC.1971.4308320
- J. A. Muller and F. Lemke, Self-organising Data Mining: Extracting Knowledge from Data. Hamburg: Books on Demand, 2000.
- H. R. Madala and A. G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modeling. Boca Raton, FL: CRC Press, 1994.
- T. C. Hsia, System Identification: Least-Squares Methods. Lexington, MA: Lexington Books, 1977.
- J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Upper Saddle River, NJ: Prentice Hall, 1997.
- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. New York, NY: Press Syndicate of the University of Cambridge, 1992.
- R. L. Burden and J. D. Faires, Numerical Analysis, 5th ed. Boston: Cengage Learning, 1993.
- G. Strang, Linear Algebra and Its Applications. Belmont, CA: Thomson-Brooks/Cole, 2005.
- C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally weighted learning," Artificial Intelligence Review, vol. 11, no. 1, pp. 11-73, 1997. http://dx.doi.org/10.1023/A:1006559212014
- H. Leung, Y. Huang, and C. Cao, "Locally weighted regression for desulphurisation intelligent decision system modeling," Simulation Modelling Practice and Theory, vol. 12, no. 6, pp. 413-423, 2004. http://dx.doi.org/10.1016/j.simpat.2004.06.002
- A. P. Engelbrecht, Computational Intelligence: An Introduction, 2nd ed. Chichester: John Wiley & Sons, 2007.
- C. C. Chang and C. J. Lin, "LIBSVM: a library for support vector machines," ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article no. 27, 2011. http://dx.doi.org/10.1145/1961189.1961199
Cited by
- A novel approach for optimizing climate features and network parameters in rainfall forecasting pp.1433-7479, 2017, https://doi.org/10.1007/s00500-017-2756-7
- Direct Multistep Wind Speed Forecasting Using LSTM Neural Network Combining EEMD and Fuzzy Entropy vol.9, pp.1, 2019, https://doi.org/10.3390/app9010126