• Title/Summary/Keyword: Weighted Networks

Search Result 281, Processing Time 0.027 seconds

Community Discovery in Weighted Networks Based on the Similarity of Common Neighbors

  • Liu, Miaomiao;Guo, Jingfeng;Chen, Jing
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1055-1067
    • /
    • 2019
  • In view of the deficiencies of existing weighted similarity indexes, a hierarchical clustering method initialize-expand-merge (IEM) is proposed based on the similarity of common neighbors for community discovery in weighted networks. Firstly, the similarity of the node pair is defined based on the attributes of their common neighbors. Secondly, the most closely related nodes are fast clustered according to their similarity to form initial communities and expand the communities. Finally, communities are merged through maximizing the modularity so as to optimize division results. Experiments are carried out on many weighted networks, which have verified the effectiveness of the proposed algorithm. And results show that IEM is superior to weighted common neighbor (CN), weighted Adamic-Adar (AA) and weighted resources allocation (RA) when using the weighted modularity as evaluation index. Moreover, the proposed algorithm can achieve more reasonable community division for weighted networks compared with cluster-recluster-merge-algorithm (CRMA) algorithm.

A Generalized Measure for Local Centralities in Weighted Networks (가중 네트워크를 위한 일반화된 지역중심성 지수)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.2
    • /
    • pp.7-23
    • /
    • 2015
  • While there are several measures for node centralities, such as betweenness and degree, few centrality measures for local centralities in weighted networks have been suggested. This study developed a generalized centrality measure for calculating local centralities in weighted networks. Neighbor centrality, which was suggested in this study, is the generalization of the degree centrality for binary networks and the nearest neighbor centrality for weighted networks with the parameter ${\alpha}$. The characteristics of suggested measure and the proper value of parameter ${\alpha}$ are investigated with 6 real network datasets and the results are reported.

WEIGHTED PSEUDO ALMOST PERIODIC SOLUTIONS OF HOPFIELD ARTIFICIAL NEURAL NETWORKS WITH LEAKAGE DELAY TERMS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • We introduce high-order Hopfield neural networks with Leakage delays. Furthermore, we study the uniqueness and existence of Hopfield artificial neural networks having the weighted pseudo almost periodic forcing terms on finite delay. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

ON STEPANOV WEIGHTED PSEUDO ALMOST AUTOMORPHIC SOLUTIONS OF NEURAL NETWORKS

  • Lee, Hyun Mork
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.491-502
    • /
    • 2022
  • In this paper we investigate some sufficient conditions to guarantee the existence and uniqueness of Stepanov-like weighted pseudo almost periodic solutions of cellular neural networks on Clifford algebra for non-automomous cellular neural networks with multi-proportional delays. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

A Comparative Study on the Centrality Measures for Analyzing Research Collaboration Networks (공동연구 네트워크 분석을 위한 중심성 지수에 대한 비교 연구)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.3
    • /
    • pp.153-179
    • /
    • 2014
  • This study explores the characteristics of centrality measures for analyzing researchers' impact and structural positions in research collaboration networks. We investigate four binary network centrality measures (degree centrality, closeness centrality, betweenness centrality, and PageRank), and seven existing weighted network centrality measures (triangle betweenness centrality, mean association, weighted PageRank, collaboration h-index, collaboration hs-index, complex degree centrality, and c-index) for research collaboration networks. And we propose SSR, which is a new weighted centrality measure for collaboration networks. Using research collaboration data from three different research domains including architecture, library and information science, and marketing, the above twelve centrality measures are calculated and compared each other. Results indicate that the weighted network centrality measures are needed to consider collaboration strength as well as collaboration range in research collaboration networks. We also recommend that when considering both collaboration strength and range, it is appropriate to apply triangle betweenness centrality and SSR to investigate global centrality and local centrality in collaboration networks.

STEPANOV ALMOST PERIODIC SOLUTIONS OF CLIFFORD-VALUED NEURAL NETWORKS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2022
  • We introduce Clifford-valued neural networks with leakage delays. Furthermore, we study the uniqueness and existence of Clifford-valued Hopfield artificial neural networks having the Stepanov weighted pseudo almost periodic forcing terms on leakage delay terms. However the noncommutativity of the Clifford numbers' multiplication made our investigation diffcult, so our results are obtained by decomposing Clifford-valued neural networks into real-valued neural networks. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

Privacy Protection Method for Sensitive Weighted Edges in Social Networks

  • Gong, Weihua;Jin, Rong;Li, Yanjun;Yang, Lianghuai;Mei, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.540-557
    • /
    • 2021
  • Privacy vulnerability of social networks is one of the major concerns for social science research and business analysis. Most existing studies which mainly focus on un-weighted network graph, have designed various privacy models similar to k-anonymity to prevent data disclosure of vertex attributes or relationships, but they may be suffered from serious problems of huge information loss and significant modification of key properties of the network structure. Furthermore, there still lacks further considerations of privacy protection for important sensitive edges in weighted social networks. To address this problem, this paper proposes a privacy preserving method to protect sensitive weighted edges. Firstly, the sensitive edges are differentiated from weighted edges according to the edge betweenness centrality, which evaluates the importance of entities in social network. Then, the perturbation operations are used to preserve the privacy of weighted social network by adding some pseudo-edges or modifying specific edge weights, so that the bottleneck problem of information flow can be well resolved in key area of the social network. Experimental results show that the proposed method can not only effectively preserve the sensitive edges with lower computation cost, but also maintain the stability of the network structures. Further, the capability of defending against malicious attacks to important sensitive edges has been greatly improved.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

Effect of Nonlinear Transformations on Entropy of Hidden Nodes

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • Hidden nodes have a key role in the information processing of feed-forward neural networks in which inputs are processed through a series of weighted sums and nonlinear activation functions. In order to understand the role of hidden nodes, we must analyze the effect of the nonlinear activation functions on the weighted sums to hidden nodes. In this paper, we focus on the effect of nonlinear functions in a viewpoint of information theory. Under the assumption that the nonlinear activation function can be approximated piece-wise linearly, we prove that the entropy of weighted sums to hidden nodes decreases after piece-wise linear functions. Therefore, we argue that the nonlinear activation function decreases the uncertainty among hidden nodes. Furthermore, the more the hidden nodes are saturated, the more the entropy of hidden nodes decreases. Based on this result, we can say that, after successful training of feed-forward neural networks, hidden nodes tend not to be in linear regions but to be in saturated regions of activation function with the effect of uncertainty reduction.

Monitoring social networks based on transformation into categorical data

  • Lee, Joo Weon;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.487-498
    • /
    • 2022
  • Social network analysis (SNA) techniques have recently been developed to monitor and detect abnormal behaviors in social networks. As a useful tool for process monitoring, control charts are also useful for network monitoring. In this paper, the degree and closeness centrality measures, in which each has global and local perspectives, respectively, are applied to an exponentially weighted moving average (EWMA) chart and a multinomial cumulative sum (CUSUM) chart for monitoring undirected weighted networks. In general, EWMA charts monitor only one variable in a single chart, whereas multinomial CUSUM charts can monitor a categorical variable, in which several variables are transformed through classification rules, in a single chart. To monitor both degree centrality and closeness centrality simultaneously, we categorize them based on the average of each measure and then apply to the multinomial CUSUM chart. In this case, the global and local attributes of the network can be monitored simultaneously with a single chart. We also evaluate the performance of the proposed procedure through a simulation study.