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Abstract 
 

Privacy vulnerability of social networks is one of the major concerns for social science 

research and business analysis. Most existing studies which mainly focus on un-weighted 

network graph, have designed various privacy models similar to k-anonymity to prevent data 

disclosure of vertex attributes or relationships, but they may be suffered from serious problems 

of huge information loss and significant modification of key properties of the network 

structure. Furthermore, there still lacks further considerations of privacy protection for 

important sensitive edges in weighted social networks. To address this problem, this paper 

proposes a privacy preserving method to protect sensitive weighted edges. Firstly, the 

sensitive edges are differentiated from weighted edges according to the edge betweenness 

centrality, which evaluates the importance of entities in social network. Then, the perturbation 

operations are used to preserve the privacy of weighted social network by adding some 

pseudo-edges or modifying specific edge weights, so that the bottleneck problem of 

information flow can be well resolved in key area of the social network. Experimental results 

show that the proposed method can not only effectively preserve the sensitive edges with 

lower computation cost, but also maintain the stability of the network structures. Further, the 

capability of defending against malicious attacks to important sensitive edges has been greatly 

improved. 
 

 

Keywords: Social Network, Privacy Protection, Sensitive Weighted Edges, Edge 

Betweenness 
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1. Introduction 

In recent years, the growing popularity of social networks has profoundly transformed how 

people live, work and communicate. Nowadays a large number of famous social applications 

such as Facebook, Twitter and Weibo have gathered numerous users. In these apps, active 

users have intimately connected not only the cyber social space but also the physical society in 

real world which is consolidated into one whole entity, generating great commercial value and 

social significance. Unfortunately, people chronically rely on these social applications while 

ignoring the privacy protection of their important information such as users’ attributes and 

relationships in reality. Today various privacy attacks and disclosures of social networks have 

triggered a series of serious security threats and social anxiety issues. Therefore, it seems 

particularly urgent to study the privacy protection technology of social networks. 

As known to all, social networks being affiliated to the field of complex networks science, 

not only contain vertex attribute data but also include their relational data. Various privacy 

protection methods have been proposed aiming at protecting these two types of privacy 

objects. For example, regarding the privacy of vertex attributes, data generalization [1-4] or 

perturbation methods [5-7] are usually adopted to protect personal identity or sensitive 

attributes such as name, phone number, address, etc from disclosure. On the other hand, for the 

privacy of the relational data [8], it has already become one of the research hotspots that needs 

to be explored more intensively. In order to achieve this privacy goal, social networks are 

usually modeled as graph structures and then edge perturbation [9] or graph modification [10] 

methods are used to modify edge weights, or randomly adding, deleting vertices or edges. In 

addition, there also exists other anonymizing methods to preserve the privacy of weighted 

network graphs by removing sensitive edges or edge clustering anonymization [11]. On the 

whole, most of the existing studies on privacy protection mainly tend to focus on how to 

implement different anonymization models based on vertex attributes or relation graphs, while 

ignoring the huge information loss and the calculation of NP-hard problems due to 

anonymization. Moreover, they all have the deficiencies of the social relationships in network 

structures being seriously damaged. Thus, current results show that we need further 

discussions for preserving the privacy of sensitive weighted edges. 

In general, the main contributions of this paper are summarized as follows.  

1) This paper formalizes the notion of sensitive edges considered as privacy data, which are 

differentiated from the normal weighted edges in the social network graph. We refer the 

sensitive edges as hubs or betweenness centrality with high betweenness values that exist on 

many shortest paths throughout graph. 

2) We propose a novel graph reconstruction technique based on perturbation operations to 

preserve the privacy of sensitive weighted edges, by means of adding new perturbed edges or 

modifying the weights of sensitive edges in social network graph. 

3) We provide the metric of information loss to evaluate the cost of privacy preservation, 

and present the results of experiments on three public datasets to prove that our proposed 

perturbation method can not only preserve the structural properties of network graph with 

lower cost, but also improve the capability of defending against malicious attacks to important 

sensitive edges. 

The rest of this paper is organized as follows. Section 2 briefly reviews the related work in 

privacy protection of social network. Section 3 formally defines preliminary concepts and 

notations. Section 4 proposes perturbation-based privacy protection algorithms for sensitive 

weighted edges in network graph. Section 5 presents experimental results using various 

evaluation metrics. Finally, Section 6 concludes this paper. 
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2. Related Work 

In the past decade, privacy issues in social networks have been extensively studied. The 

surveys in [12, 13] have summarized recent existing privacy protection techniques of graph 

structures in social networks. Generally speaking, existing privacy protection approaches for 

vertices’ attributes and relational data in network graphs can be categorized into two groups: 

data perturbation [5-7, 9, 10] and k-anonymity [14-16]. 

We note that as one typical clustering based model, the basic idea of k-anonymity is to make 

the probability of re-identification attack with background knowledge no larger than 1/k by 

way of clustering the vertices or generalizing the structures in network graph. Some 

researchers including [14-16] have proposed to cluster k vertices with similar attributes or 

links into one super class and then generalize them to protect the privacy vertices, since their 

clustering objects are particularly targeted at the network vertices, which leads to the serious 

defect that huge information loss of vertices will seriously incur graphical structure 

uncertainty. Besides previous k-anonymity model, other similar anonymization techniques are 

proposed in succession. For instance, Zou et al. [17] have proposed a kind of k-automorphism 

protection model to defend against structural attacks, this model is based on graph 

isomorphism theory to achieve privacy protection by adding and deleting edges. Cheng et al. 

[18] also design one similar k-isomorphism model to protect both vertices and links: a graph is 

k-isomorphism if this graph consists k disjoint isomorphic subgraphs. In addition, there are 

some studies in [19-21] aiming at the privacy issues of weighted edges in networks. Among 

them, Liu and Yang [19] propose the k-possible anonymity for a weighted graph based on edge 

generalization approach, the so-called k-possible graph refers to graph anonymization that 

vertices in the same anonymization group are indistinguishable from each other based on 

weight bags, and the adversary cannot re-identify each vertex with confidence larger than 1/k. 

Moreover, a novel k-weighted degree anonymous model is proposed in literature [20], this 

model makes sure for any vertex u, there are at least k-1 other vertices which have the same 

degree as u and the weights on the edges adjacent to these vertices are also the same as u, 

which helps to prevent vertex re-identification in the weighted graph based no distance 

functions. Likewise, another k-histogram anonymization proposed in literature [21] makes the 

weight bags of at least k-1 other weight bags that are same weight so as to prevent from 

weighted-based attacking. 

With regarding to data perturbation approach, as is known that the original network graph 

may be randomly modified by adding or deleting edges or vertices, so that the attacker can’t 

accurately conjecture the real structures. Intuitively, this approach can be further classified as 

graph structural perturbation and weight value perturbation. For instance, Hay et al. [14] 

develop a random graph perturbation method by randomly deleting or adding edges to 

anonymize a social network, which can effectively reduce the re-identification attacks by an 

adversary with acceptable distortion of the graph. In order to defend against vertex 

re-identification, Ying and Wu [9] propose spectrum preserving randomization method that 

belongs to edge based graph perturbation through removing true edges and adding some fake 

edges to maintain about the same number of edges before and after anonymization. 

Furthermore, Xiao et al. [22] extract a dendrogram from a simple graph according to 

hierarchical random graph (HRG) model, and then apply differential privacy methods to add 

noise so as to perturb the graph structure. On the other hand, as to edge weight perturbation, 

Liu et al. [23] use Gaussian randomization multiplication to modify the weight of specific 

edges in the meanwhile to keep the shortest paths between the specific pairs of vertices 

unchanged. Das et al. [24] consider edge weight anonymization in social graphs, and propose 

linear programming method to perturb the edge weights in the anonymized graph. As can be 
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seen, the edge weight perturbation method is only suitable to distort the original data values for 

one-dimensional distribution, consequently that will affect the data utility and 

privacy-preserving level. Unfortunately, until now there are only a few studies such as  [10, 11, 

25, 26] have discussed several defensive methods against inference attacks to network 

sensitive edges. Specifically, the approach of edge based graph randomization is proposed to 

protect sensitive links via adding or deleting operations in literature [10], but its disadvantage 

is that the original network structure will be seriously damaged. Then, another graph 

anonymization technique by removing sensitive edges or edge clustering anonymization is 

presented to preserve graph-based privacy attacks such as link re-identification in literature  

[11], whereas the data utility of privacy is determined by the amount of data removed. In 

addition, Yuan et al. [25] combine k-degree anonymity with l-diversity model that considers 

the protection of structural information as well as sensitive labels of individuals, which 

realizes the graph anonymization by adding noise vertices into a graph with the least distortion 

to the properties of the original graph, such as degrees and distances between vertices. 

However, this model does not consider the impact of the amount of information loss caused by 

graph distortion. Liu et al. [26] develop a general framework for preventing link inference 

attacks, which adopts a novel lineage tracking mechanism by edge-cutting, adding or 

switching operations to cut off the inference paths of sensitive relationships meanwhile 

retaining the data utility. 

Overall, most previous privacy protection studies in social networks mainly focus on 

k-anonymity or data perturbation methods, but they may suffer from the serious problems of 

huge information loss and significant modification of key properties to network structure. 

Consequently, more attention still needs to be paid to preserve the privacy of important and 

sensitive parts in social networks. So far, many researchers have not yet been able to provide 

uniform definition about sensitive edges of network graph, especially for weighted edges not 

being emphasized enough. To overcome these limitations, this paper proposes a privacy 

protection method for weighted sensitive edges in social network graph. Our method firstly 

distinguishes sensitive edges and non-sensitive edges according to edge betweenness features 

of graph, and then uses the combination operations by adding noise edges and perturbating 

weight values for important sensitive weighted edges, to further preserve the privacy of key 

areas in social networks. 

3. Preliminaries and Modeling 

To be convenient, we firstly consider the social networks as undirected and weighted network 

graphs denoted by G = ( , )V E , in which the set of vertices is V ={ |1 }iv i n  , and the set of 

weighted edges is E ={ | , }xy x ye v v V , where the larger the weight of edge xye  is, the closer the 

relationship between the two vertices 
xv  and yv . In weighted network graph, the 

characteristic of edge betweenness reflects the necessary path through which the information 

flow or communication between vertices must pass in the whole graph. Note that the higher 

the edge betweenness value is, the greater importance to social network, so if the attackers 

deliberately aim at destroying the privacy of this area, which will cause more serious damages 

to the network structure than other parts. Thus, we formally define the edge betweenness as 

follows. 

Definition 1. Edge betweenness: The ratio of the number of the shortest paths passing 

through edge xye  to the total number of shortest paths among all pairs of vertices in network 

graph is called betweenness of edge xye , that can be expressed as: 



544                                                                Gong et al.: Privacy Protection Method for Sensitive Weighted Edges in Social Networks 

 

 BC( )
xye

st
xy

s t

m
e

M

=                                                                   (1)  

 

where M  represents the total number of shortest paths between all vertex pairs in network 

graph, and xye
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tv . 

Next, the notion of the shortest path generally means the minimum length or hops from the 

source vertex to the sink vertex, but we note that there usually exist not only one path between 

the source and the sink vertices. Thus, in this paper we introduce another specific definition for 

shortest path. 
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Here, notation 
.ie  means the minimal edge weight on paths from vertex 

iv  to its neighbor. 

As we can see from above, edge betweenness is closely related to all the weighted paths of 

vertex pairs in graph, where the edge with higher betweenness rather than higher weight 

maybe have greater influence to the whole network. Thus in this paper, our main goal is to how 

preserve the privacy of the most valuable or important edges in network graph. To determine 

which edges are valuable and need to be protected, we will distinguish the sensitive and 

non-sensitive edges based on the threshold value of edge betweenness. 

Definition 3. Sensitive edge: If and only if the betweenness value of edge xye  is no less 

than the threshold  ( >0), then the edge xye  is said to be a sensitive edge, and denoted as 

*xye . 

           xye → *xye  iff BC( )xye                                                         (3) 

 

According to above criterion, all edges in network graph will be grouped into two 

categories, sensitive edges and non-sensitive edges. Note that sensitive edges are obviously 

more valuable and influential than other non-sensitive edges, and such edges should be 

considered as privacy objects to be preserved. This paper will adopt perturbation operations to 

guarantee the privacy of sensitive edges, mainly including two types of operations such as 

adding new weight edges and modifying the weights of sensitive edges. As known that the 

graph perturbation will change the topological structure of a graph and along with the rapid 

reduction of data utility. In order to estimate the cost of graph perturbation, we introduce the 

edge-based metric for information loss that quantifies the total weights modified of the 

number of changed edges before and after graph perturbation. 

Definition 4. Information loss: The sum of the edge weight changed occurring between the 

perturbed network G  and the original network G  is considered as information loss. 
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where the first term  represents the sum of the weights for all added edges, and the second 

term means the accumulative sum of the changed weight for all modified edges. Intuitively, 

we can see that the less information loss manifests the smaller impact on data utility after 

perturbation. 

4. Privacy Preservation Algorithm for Sensitive Weighted Edges 

As is pointed out, sensitive edges and their neighbors are becoming the most important 

properties of social networks. In order to guarantee the privacy of these key areas, this paper 

will adopt graph perturbation approach so as to reduce the betweenness of sensitive edges. In 

this section, we will give the structural analysis of each sensitive edge and its neighbors in 

network graph, and then our perturbation operations are proposed for the different cases of 

sensitive edges. 

4.1 Structure Analysis of Neighbors for Sensitive Edges 

Assuming arbitrary sensitive edge in network graph, there exist two cases for neighboring 

edges on both sides of such edge as shown in Fig. 1. 
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(a)                                                                      (b) 

Fig. 1.  Neighbor edges on both sides of sensitive edges 

 

In the case shown in Fig. 1(a), either side of the sensitive edge 
ABe  has more than one 

neighbors, for example, the degree of the vertex 
Bv  in edge 

ABe  is greater than one, while the 

other side of such edge for instance vertex 
Av  has only one degree. Thus, in this case the 

sensitive edge 
ABe  satisfies the below condition. 

 

( ) ( ) xy |AB x x y y x ye e v V v v v V v v E  − −   − − =                             (5) 

 

From the view of network structure, we know that this type of sensitive edge 
ABe  lies in the 

border position of social network. Because there is only one side of this sensitive edge 

connected with multiple neighbors, and thus such edge 
ABe  becomes an important area in 

network graph. Therefore, it is of great significance to protect the privacy of important 

endpoint of sensitive edge, for example vertex 
Bv  and its neighbors. 

In the case shown in Fig. 1(b), both sides of the sensitive edge 
ABe  have multiple neighbors, 

and the degrees of these vertices for example 
Av  and 

Bv  are both greater than one. In this 

situation, both sides of such sensitive edge 
ABe  should satisfy the below condition. 
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( ) ( ) xy |AB x x y y x ye e v V v v v V v v E  − −   − −                              (6) 

 

To consider this case, the sensitive edge 
ABe  actually lies in the critical positions where will 

be always passed by many shortest paths between vertex pairs in network graph, which means 

the sensitive sub-paths. Thus, how to perturb the both sides of this important sensitive edge is 

the most important and complex tasks. 

4.2 Perturbation Operations for Sensitive Weighted Edges 

Firstly, for the case shown in Fig. 1(a), since this type of sensitive edge is just on the marginal 

position of the social network, we only need to consider the perturbation operation to one side 

of such sensitive edge with vertex degree greater than one. In this situation, we perturb the 

graph by adding a new weighted edge same to the sensitive edge 
ABe , which connects from 

one side of the sensitive edge with no neighbors to the nearest neighbor of the other side, and 

the nearest neighbor comes from the adjacent set of this sensitive edge. Fig. 2 shows the 

operation results of graph perturbation, assume the sensitive edge is 
ABe , we select the nearest 

neighbor with minimum weight from the adjacent set of vertex 
Bv  in sensitive edge, for 

instance 
xv , this can be expressed as: 

 

{ }, . . ( )Bx x BMin e s t v N v                                                          (7) 

 

where the notation ( )BN v  means the adjacent set of vertex 
Bv . Then, we let the vertex 

xv  

connect to the vertex 
Av  of the sensitive edge and copy the same weight with 

Axe =
ABe , thus 

obviously the shortest path *
( , )A xP v v  from vertex 

xv  to vertex 
Av  will be replaced by the new 

path , ,A AB xv e v . 

 

A BeAB

eB.

eBX ..
.

=1 >1

eAB

 
Fig. 2.  Perturbation by adding new edge with the same weight 

 

Secondly, for the case shown in Fig. 1(b), note that this type of sensitive edge 
ABe  usually 

belongs to the very important area in social network, we will consider perturbation operations 

for the adjacent vertices at both ends of the sensitive edge. To discuss all possible situations of 

the neighboring vertices adjacent to the sensitive edge, we further group the relationship types 

of neighboring vertices into three different situations. That depending on whether the 

neighboring vertices in the two ends of the sensitive edge 
ABe  are either connected to each 

other or not, or two ends of such sensitive edge have the same shared neighboring vertex, more 

detailed cases are demonstrated in Fig. 3. 
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Fig. 3.  Relation types between the sensitive edge and neighboring vertices 

 

For the situation in Fig. 3(a), when the two neighboring vertices at both sides of the 

sensitive edge 
ABe  are connected with the weight 

CDe , we may directly perturb the weight of 

the connected neighbors by changing the old weight to the new sensitive weight 
ABe , the result 

is shown in Fig. 4(a). After the weight being perturbed, we note that all the shortest paths that 

contain the sub-paths from one neighbor vertex 
Cv  to the other neighbor vertex 

Dv  denoted by 

( , )C DP v v = , , , , , ,C CA A AB B BD Dv e v e v e v  which passed through the sensitive edge 
ABe , will be 

directly changed to pass through the more shorter sub-path , ,C AB Dv e v , thereby the edge 

betweenness of the original sensitive edge 
ABe  will correspondently fall down by modifying 

the weight of next adjacent edge. 

For the situation in Fig. 3(b), when the neighboring vertices at both sides of the sensitive 

edge 
ABe  are not directly connected, we should take perturbation operation by adding new 

pseudo edge between the two neighboring vertices with the same weight to the sensitive edge, 

and the corresponding operation is as shown in Fig. 4(b). More specifically from the graph, 

the disconnected neighboring vertices
Cv and

Dv  are added a new pseudo-edge between them 

and given the same sensitive weight 
ABe . Similarly, we can conclude that the previous indirect 

shortest path ( , )C DP v v  will be turned into the direct shortest path , ,C AB Dv e v , which will also 

lead to the betweenness of original sensitive edges 
ABe  decreased slightly. 

For the situation in Fig. 3(c), there is a common neighboring vertex for the sensitive edge 

ABe , and if the condition is satisfied by 
AB BC ACe e e+  , then we should change the larger weight 

of edge 
ACe  into the sensitive weight 

ABe , so that makes the shortest path between vertices 
Av  

and 
Cv  is directly changed to , ,A AB Cv e v . Consequently, the result is shown in Fig. 4(c). 
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Fig. 4.  Sensitive edge perturbation operations 

 

Based on above discussion, our proposed privacy perturbation method for weighted 

sensitive edges is divided into two parts: (1) calculate the edge betweenness coefficient in the 

shortest path set, and filter out the sensitive edges according to the threshold, which is 

implemented by algorithm1. (2) discuss the neighbor structure of each sensitive edge, and then 

perform the privacy perturbation operations by adding new pseudo edges or modifying the 

weight of adjacent edges, we develop algorithm 2 to implement it. 
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Algorithm1. Edge betweenness computing and sensitive edge filtering 

Input：Network graph G=(V, E), shortest path set P , and sensitive threshold   

Output：Sensitive edge set S ； 

1 for each ie  E   do 

2   for each 
jp  P  do  //for each path 

jp  in the path set P  

3  for each  s jp   do  //for each edge s of the path
jp  

4    if ie ==s then 

5                ie .BC ++ ; //to get the number of paths through edge ie  

6               break; 

7             endif 

8   end for    

9    end for   

10 end for  

11 for each ie  E   do 

12  .ie BC = .ie BC / | |P ;  //Compute the edge betweenness by (1) 

13       If  .ie BC    then 

14         add ie → S ;    //Add sensitive edge e to set S  

15 end for   

 

In algorithm1, the shortest path set P  of the input network G  is generated by using the 

classical Floyd-Warshall method, suppose the scale of the path set P  is n, and the average 

path length in the set is k. Notice that the goal of steps○1 -○10 is to count the number of 

occurrences of each edge in the path set P  in the network, the time complexity is (| | )O E n k  . 

After that, steps○11-○15 aim to compute the edge betweenness for each edge and filter out the 

sensitive edges according to the threshold, the required runtime is (| |)O E . Therefore, the 

overall time complexity of our algorithm is (| | | |)O E n k E  + . 

 

Algorithm2. Weighted sensitive edge perturbation privacy protection 

Input：Network graph G=(V, E), Sensitive edge set S  

Output：privacy network graph G  after perturbation  

1 for each 
xye S  do 

2   if  |degree( xv )|>1 && |degree(
yv )|==1  then // for the case Fig. 2 

3  select vertex 
jv with { }xjMin e  // select vertex 

jv  from the neighbor set of xv ; 

4      add a new pseudo edge( xv , 
jv ) with the weight 

xje =
xye ; 

5   end if   

6   if  |degree( xv )|>1 && |degree(
yv )|>1  then   

7      for each iv ∈neighbor( xv ) do 

8    for each 
jv ∈neighbor (

yv ) do 

9              if iv <>
jv && edge( iv , 

jv ) E  then   //situation of Fig. 4(a) 

10                    modify the weight of edge( iv , 
jv )  

ije =
xye ; 

11              if iv <>
jv && edge( iv , 

jv ) E then  //situation of Fig. 4(b) 
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12              add new pseudo edge( iv , 
jv ) and assign 

ije =
xye ; 

13              if iv <>
jv &&

xye +
yie < xie  then   // situation of Fig. 4(c) 

14                   modify the weight of edge( xv , iv )and assign xie =
xye ; 

15             neighbor (
yv )=neighbor (

yv )-{
jv };  //remove from neighbor set 

16             break; 

17       end for   

18       neighbor ( xv )=neighbor ( xv )-{ iv }; 

19     end for   

20   end if   

21 end for  

 

The algorithm 2 has implemented the perturbation operations dealing with various 

situations of the sensitive edges as shown in Fig. 2 and Fig. 4 respectively. Among which, for 

the results in Fig. 2, steps○2 -○5  perform the perturbation operations by adding new pseudo edge 

to the neighbor of one side of the sensitive edge, and its weight is assigned same to the 

sensitive weight. Next, as to the results in Fig. 4, steps○6 -○20 perturb the neighboring vertices of 

sensitive edges by adding pseudo edge or modifying edge weights of neighbors at both sides of 

the sensitive edge. To evaluate the computation cost, assume that the size of sensitive edge set 

is m, and the average degree of sensitive edges is d. Obviously, we observe that the running 

time of algorithm 2 is mainly focus on the perturbation operation of the neighbors of the 

sensitive edges by step○6 -○20 in two nested loops, and since that step ○16 will jump out of the inner 

loop after every perturbation operation is completed. Thus, the overall time complexity 

required for the algorithm should be ( )O m d . 

5. Experiment Evaluations 

In this section, we provide extensive experiments to evaluate the effects of our privacy 

perturbation algorithms. All algorithms are implemented using Python3.5, and the 

experiments are conducted on computers with intel core i7 processor, 8G memory and 

Windows 8 operating system. In our experiments, we choose three different scales of social 

network datasets to perform experimental comparisons. The Les Miserables abbreviated as 

Lesmis, belongs to a typical small-sized undirected miscellaneous network, which contains 

co-occurence of characters in Victor Hugo's novel 'Les Miserables' including 254 

co-occurence relationships among 77 characters. Netscience dataset is a middle-sized network 

of co-authorships in the area of network science before 2006, containing 2724 co-authorship 

for 1589 authors. Geom dataset is a large collaboration network in computational geometry 

with 7343 vertices and 11898 edges. All the other related parameters are shown in Table 1. 

 
Table 1. Three different scale social network attributes 

Network dataset #vertices #edges Average 

degree 

Average 

edge weight 

Connection 

Type 

Degree 

distribution 

Les Miserables(Lesmis) 77 254 6.60 28 Undirected power law 

Netscience 1589 2724 3.43 40 Undirected power law 

Geom 7343 11898 3.24 73 Undirected power law 
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    In order to conveniently visualize the experimental results, we choose the relative small 

dataset Lesmis to demonstrate our perturbation effects on the weighted sensitive edges. Fig. 5 

shows the privacy protection results for sensitive edges in Lesmis dataset when the 

betweenness threshold  =0.5. From this graph visualization, we can observe that there exists 

about 250 non-sensitive edges depicted in green color, and only 4 sensitive edges in red color 

need to be considered perturbation. After privacy protection, we add and modify about 40 

perturbated weight edges marked with blue color, which all are the adjacent edges of these 

sensitive edges. As a result, the difficulty of malicious attacks against sensitive edges will 

roughly increase about 10 times than before perturbation. 

 
Fig. 5.  Perturbation effects on Lesmis dataset when betweenness  =0.5 

 

Next, we further compare four most popular metrics based on graph characteristics after 

privacy perturbation on three different datasets. Fig. 6 shows the changes of average path 

length after perturbation operations under various thresholds of edge betweenness. The results 

indicate that the average path length gradually increases with growing edge betweenness in 

Netscience and Geom datasets, while the growth almost is kept stable in dataset Lesmis. This 

is because Lesmis belongs to one typical small-scale dataset, and the number of sensitive 

edges filtered under different betweenness thresholds is so few that sensitive edges are almost 

kept fixed. Thus, the perturbation operations have little effect on the original network 

structure. 

 

 
Fig. 6.  Changes of average path length after perturbation 
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Fig. 7 depicts how the perturbation operations influence the average degree of network 

under various edge betweenness thresholds. Obviously, when the betweenness threshold is 

larger, the fewer sensitive edges are obtained, and consequently the fewer edges need to 

perform perturbation operation. As a result, the average degree of network is gradually 

decreased and nearly approximate to the original unperturbed network. On the whole, when 

the sensitive edge threshold sits in the interval [0.2, 0.5] in Netscience and Geom datasets, our 

edge perturbation operations will have less impact to the network structure, and the average 

degree of perturbed network declines slowly with the slight increasing of sensitive edges. As 

for a small dataset, for instance Lesmis, the perturbation operations have greater impact on the 

average degree of network. But when the edge sensitive edge threshold lies in the two 

intervals, such as [0.2, 0.35] and [0.4, 0.5], the number of sensitive edges does not change 

much, so the average degree of perturbed network is kept relatively stable. 

 

 
Fig. 7.  Impact of average degree of network after edge perturbation 

 

Fig. 8 further shows the results of clustering coefficient changes after network perturbation 

under various edge betweenness thresholds. Among these datasets, we can observe that the 

clustering coefficient on dataset Netscience has the most flat changes. The reason is that a 

large number of perturbation operations belong to modifying the weights of sensitive edges, 

thus having a minimal impact on the original network structure. While on datasets Lesmis and 

Geom, there exists gradually increasing number of sensitive edges when the betweenness 

threshold lies in the interval [0.1, 0.2], consequently the edge perturbation operations make the 

greater increases of clustering coefficient of reconstructed graph, whereas the overall growth 

indicates a relatively flat trend. Thus, this shows that our proposed privacy protection for 

sensitive edges based on perturbation approach could maintain network structure properties 

relatively stable. 
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Fig. 8.  Impact of clustering coefficient of network after edge perturbation  

 

Fig. 9 reports the number of perturbed edges including adding and modifying operations 

under various sensitive thresholds. Since Geom is the largest dataset, the total number of the 

sensitive edges required to be perturbed always records the largest magnitude, and will drop 

significantly as the edge betweenness threshold increases slowly. While in Netscience and 

Lesmis datasets, the number of edges needed to be perturbed decreases very gently with the 

increase of edge betweenness threshold, there are no obvious fluctuations compared with 

Geom dataset. The main reason is that Netscience and Lesmis belong to medium and small 

scale datasets respectively, so the number of sensitive edges does not have the same order of 

magnitude as Geom. 

 
Fig. 9.  Count of changed edges in perturbation operations 
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Besides measuring above properties of network structure, we conduct evaluation of the 

possibility of inference attacks and the information loss caused by perturbation. Fig. 10 shows 

the results of attack success rate under various sensitive thresholds on three datasets. For 

Lesmis dataset, the success rate of attacks goes up scalariformly when the edge betweeness 

thresholds are in the two intervals, for instance [0.2, 0.35] and [0.4, 0.5]. The reason is that the 

number of sensitive edges has minor changes in these two intervals, hence the success rate 

attacking at sensitive edges is almost kept unchanged after perturbation. While in the cases of 

Netscience and Geom datasets, the success rate of attacks goes up slightly as the sensitive edge 

threshold increases, but they both are remained at a very low level. Therefore, the results show 

that our perturbation based approach on different social network datasets can achieve ideal 

privacy protection effects for sensitive edges. 

 

 
Fig. 10.  Attack success rate under various sensitive thresholds 

 

Finally, Fig. 11 and Fig. 12 summarize the quantity of information loss and the loss rate 

before and after network perturbation. As defined in (4), the computation of information loss is 

not only including the sum of all weights of added edges but also the accumulative weights of 

modified edges, and here the information loss rate refers to the proportion of information loss 

quantity to the total weights of original network. 

As shown in Fig. 11, the information loss of Geom after perturbation always keeps the 

largest quantity among these three datasets, and its tendency is to decrease sharply with the 

increase of sensitive edge threshold, whereas in case of Lesmis and Netscience datasets, their 

information loss maintains a steady downward trends. This is because the size of dataset Geom 

is much larger than the other two datasets, and besides that Geom also has the largest average 

edge weight. As mentioned above, similar results are depicted in Fig. 9, it is indicated that the 

number of changed edges by perturbation in dataset Geom is far more than that in Lesmis and 

Netscience datasets. At the same time, the results in Fig. 12 are shown that when the sensitive 

edge threshold is greater than 0.3, the information loss rate in these three datasets changes 

approximately same to each other. Overall, we can conclude that our privacy protection 

approach for sensitive edges in these datasets can make the information loss caused by 

perturbation being controlled within the ideal range. 
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Fig. 11.  Information loss of edge weights 

 

 
Fig. 12.  Ratio of information loss 

6. Conclusion 

This paper mainly addresses the privacy issues of sensitive edges in weighted social graph. In 

order to identify the high valuable and important edges for privacy preserving, we give the 

formal notion of sensitive edges considering as privacy data which are differentiated from the 

normal weighted edges in the social network graph. Then the privacy preservation based on 

graph perturbation approach is proposed to protect the privacy of important and sensitive areas 

in social networks by adding pseudo-edges or modifying the weights of sensitive edges. In 

addition, we provide the metric of information loss to evaluate the cost of privacy 

preservation, and conduct extensive experiments on three typical real-world datasets. The 

experimental results demonstrate that our proposed perturbation method can not only keep 

relatively stable structural properties of network graph with lower cost, but also effectively 

provide satisfactory privacy guarantee to defend against malicious attacks to important 

sensitive edges of social network. As a future work, we plan to investigate superior 

perturbation techniques to ensure the privacy for more complicated sensitive edges with 

multi-dimensional properties. 
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