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ABSTRACT 
 

Hidden nodes have a key role in the information processing of feed-forward neural networks in which inputs are processed through a 
series of weighted sums and nonlinear activation functions. In order to understand the role of hidden nodes, we must analyze the 
effect of the nonlinear activation functions on the weighted sums to hidden nodes. In this paper, we focus on the effect of nonlinear 
functions in a viewpoint of information theory. Under the assumption that the nonlinear activation function can be approximated 
piece-wise linearly, we prove that the entropy of weighted sums to hidden nodes decreases after piece-wise linear functions. 
Therefore, we argue that the nonlinear activation function decreases the uncertainty among hidden nodes. Furthermore, the more the 
hidden nodes are saturated, the more the entropy of hidden nodes decreases. Based on this result, we can say that, after successful 
training of feed-forward neural networks, hidden nodes tend not to be in linear regions but to be in saturated regions of activation 
function with the effect of uncertainty reduction. 
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1. INTRODUCTION 
 

 When an input sample is presented to feed-forward neural 
networks (FNNs), it is processed through a series of weighted 
sums and nonlinear activation functions. It was proved that the 
FNNs with enough hidden nodes can approximately implement 
any function [1]-[4]. Herein, the weighted sums to hidden 
nodes are a sort of projections from the input space to a hidden 
feature space followed by element-wise nonlinear activation 
functions. There have been research results to understand the 
role of hidden nodes. Oh and Lee proved that the nonlinear 
function of hidden nodes has an effect of decreasing 
correlations among hidden nodes [5]. They also argued that 
FNNs are a special type of nonlinear whitening filter [5]. And, 
Shah and Poon investigated that hidden nodes with sigmoidal 
activation functions have the ability to produce linearly 
independent internal representations [6]. 

In neural network field, information theory provides many 
fruitful research results. Lee et al. reported that FNNs have a 
capability of information extraction for pattern classification 
through hierarchically keeping inter-class information while 
reducing intra-class variations [7]. Learning rules were 
proposed stemming from information theory [8]-[14]. The 
upper bound for the probability of error was derived based on 
Renyi’s entropy [15]. Information theory can provide the 
construction strategy of neural networks [16]. Also, hidden 
information maximization and maximum mutual information 
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methods were proposed for feature extractions [17], [18]. In 
this paper, we focus on the nonlinear activation functions of 
hidden nodes in a viewpoint of information theory. Under the 
assumption that nonlinear activation function can be 
approximated piece-wise linearly, we derive that the entropy of 
hidden nodes decreases after piece-wise linear transformation. 
Based on the derivation, we can interpret the role of hidden 
nodes in a viewpoint of entropy or uncertainty. 

 
 

2. NONLINEAR EFFECT ON THE ENTROPY OF 
HIDDEN NODES 

 
In FNNs, inputs are processed through a series of 

weighted sums and nonlinear activation functions. When inputs 
or weights are perturbed randomly, the weighted sums to 
hidden nodes are approximately jointly Gaussian according to 
the central limit theorem [19]-[21]. Therefore, we analyze the 
effect of nonlinear function on jointly Gaussian random 
variables. 

If u and v are jointly Gaussian random variables with zero 
means, then the joint entropy of u and v [22] is given by 

⎟
⎠
⎞

⎜
⎝
⎛ −= 21 2log),( reh vuσσπvu .          (1) 

Herein, uσ and vσ  are the standard deviation of u and v, 
respectively, and r is the correlation coefficient between u and 
v. 

Let’s assume that u and v are transformed into y and z as 
follows: 
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where a, b, c, and d are nonzero real values. Then, the entropy 
of y is given by 

∫= dyyfyfh )(log)(  )( yyy - ,          (3) 

where )(yfy  is the probability density function (p.d.f.) of 

random variable y. By substituting[19] 
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Eq. (3) can be derived by 
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Here, )(ufu  is the p.d.f. of random variable u and 
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since u is Gaussian with zero mean. Accordingly, the entropy 
of z is given by 

( ) ( ).log
2
1 )( cdhh += vz                (7) 

 
The joint entropy after the piece-wise-linear 

transformations is defined by 

∫∫= dydzzyfzyfh ),(log),()( yzyzzy, - .        (8) 

The joint p.d.f. of y and z can be separated into four quadrants 
as follows: 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≤>
⎟
⎠
⎞

⎜
⎝
⎛

≤≤
⎟
⎠
⎞

⎜
⎝
⎛

>≤
⎟
⎠
⎞

⎜
⎝
⎛

>>
⎟
⎠
⎞

⎜
⎝
⎛

=

.0 and  0    ,
,

0 and  0    ,
,

0 and  0    ,
,

0 and  0    ,
,

)(

vu

vu

vu

vu

uv

uv

uv

uv

yz

ad
d
z

a
yf

bd
d
z

b
yf

bc
c
z

b
yf

ac
c
z

a
yf

y,zf         (9) 

Therefore, Eq. (8) is also separated into four parts as 
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Since the joint p.d.f. of u and v is given by 
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the first quadrant term in Eq. (10) is derived by 
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Here, 
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The second term in the right side of Eq. (12) becomes 

( )
]),(2)(

2
1

)(
2
1[

12
1),(

22

2

22

2

2

∫ ∫∫

∫∫ ∫
∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

-

-

dydzzyyzf
ac

rdzzf
c

z

dyyf
a

y
r

dydzzyBf

vuv

u

yzz

yyz

σσσ

σ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

   (15) 

Since u=y a  is symmetric and zero mean, 

.
2
1                                   

2
11                                    

)(
2
11                                   

)(1)(

22
22

2
22

2
2222

2

=

=

=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∫

∫∫
∞

∞

∞∞

u
u

u

uu

a
a

dyyfy
a

dyyfy
a

dyyf
a

y

σ
σ

σ

σσ

-

00

y

yy

    (16) 

And according to the same procedure, 
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By Papoulis [19], 
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and 
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Also by Oh [23], 
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By substituting Eqs. (18) and (20) into Eq. (12), 
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Using the same procedure from Eq. (11) to (24), we can 

derive that 
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By substituting Eqs. (24), (25), (26), and (27) into Eq. (10), we 
attain 
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Finally we take the derivation 

abcdhh log)()( += vu,zy,             (29) 

with the substitution of Eq. (1) into (28). 
 

In FNNs, we usually use the tanh(.) sigmoidal function 
(Fig. 1) as the nonlinear activation function of hidden node. 
Assuming that the nonlinear activation function can be 
approximated piece-wise linearly as in Eq. (2), then the 
parameters a, b, c, and d correspond to the slope of nonlinear 
activation function. As shown in Fig. 2, the slope is less than or 

equal to 0.5. Thus, 0log <abcd  and )()( vu,<zy, hh . Also, 
the less steep the slopes are, the more the joint entropy after the 
nonlinear function decreases.  

Consequently, we can argue that the nonlinear activation 
function decreases the entropy or uncertainty of hidden nodes. 
The sigmoid activation function can be separated into linear 
region with steep slope and saturated region with gentle slope 
as shown in Fig. 1. When hidden node values are in the 
saturation region of sigmoid activation function, the entropy 
decreases much more. This coincides with the argument that 
hidden nodes tend to be saturated after successful training. 
 

 
Fig. 1. The sigmoid activation function of hidden node 

 

 
Fig. 2. The slope of the sigmoid activation function 
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Furthermore, the entropy of hidden nodes provides 
hierarchical understanding of information extraction 
capabilities acquired through learning. Lee et al. argued that 
input samples have the inter-class information as well as the 
intra-class variation [7]. The inter-class information is the 
information content that an input sample belongs to a specific 
class, and the intra-class variation is a measure of the average 
variations within the classes including noise contaminations. 
After learning, input samples are projected to hidden nodes 
through weighted sums and element-wise nonlinear 
transformations. In this paper, we proved that the entropy of 
hidden nodes decreases after the nonlinear transformations. The 
decreasing of hidden nodes’ entropy is correspond to the 
decreasing of intra-class variations, as pointed out by Lee et al 
[7]. 
 
 

3. CONCLUSIONS 
 

In this paper, we prove that the entropy of jointly Gaussian 
random variables decreases after piece-wise linear 
transformations. Also, the less steep the slopes are, the more the 
joint entropy decreases. Since the nonlinear activation function 
of hidden nodes can be approximated piece-wise linearly, we 
can argue that the nonlinear activation function decreases the 
uncertainty among hidden nodes. Furthermore, the entropy of 
hidden nodes decrease much more after successful training of 
FNNs. 
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