• Title/Summary/Keyword: Web Recommendation

Search Result 314, Processing Time 0.028 seconds

Development of the Goods Recommendation System using Association Rules and Collaborating Filtering (연관규칙과 협업적 필터링을 이용한 상품 추천 시스템 개발)

  • Kim, Ji-Hye;Park, Doo-Soon
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • As e-commerce developing rapidly, it is becoming a research focus about how to find customer's behavior patterns and realize commerce intelligence by use of Web mining technology. One of the most successful and widely used technologies for building personalization and goods recommendation system is collaborating filtering. However, collaborative filtering have serious data sparsity problem. Traditional association rule does not consider user's interests or preferences to provide a user with specific personalized service.In this paper, we propose an goods recommendation system, which is integrated an collaborative filtering algorithm with item-to-item corelation and an improved Apriori algorithm. This system has user's interests or preferences ro provide a user with specific personalized service.

  • PDF

An Expert Recommendation System using Ontology-based Social Network Analysis (온톨로지 기반 소설 네트워크 분석을 이용한 전문가 추천 시스템)

  • Park, Sang-Won;Choi, Eun-Jeong;Park, Min-Su;Kim, Jeong-Gyu;Seo, Eun-Seok;Park, Young-Tack
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.390-394
    • /
    • 2009
  • The semantic web-based social network is highly useful in a variety of areas. In this paper we make diverse analyses of the FOAF-based social network, and propose an expert recommendation system. This system presents useful method of ontology-based social network using SparQL, RDFS inference, and visualization tools. Then we apply it to real social network in order to make various analyses of centrality, small world, scale free, etc. Moreover, our system suggests method for analysis of an expert on specific field. We expect such method to be utilized in multifarious areas - marketing, group administration, knowledge management system, and so on.

Hybrid Food Recommendation System Using Auto-generated User Profiles (자동 생성된 사용자 프로파일을 이용한 하이브리드 음식 추천 시스템)

  • Jeong, Ju-Seok;Kang, Sin-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.609-617
    • /
    • 2011
  • This paper proposes a personalized food recommendation system using user profiles auto-generated from Twitter. The user profiles are generated by extracting nouns from Twitter, and calculating emotional scores according to whether each noun is collocated with emotion words. Representative noun information for each food is constructed by analyzing web pages relevant to foods. Appropriate foods for users can be recommended by calculating similarities among the extracted resources. The proposed system has an advantage in that it can always recommend foods even if a user is a newcomer.

Restructure Recommendation Framework for Online Learning Content using Student Feedback Analysis (온라인 학습을 위한 학생 피드백 분석 기반 콘텐츠 재구성 추천 프레임워크)

  • Choi, Ja-Ryoung;Kim, Suin;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1353-1361
    • /
    • 2018
  • With the availability of real-time educational data collection and analysis techniques, the education paradigm is shifting from educator-centric to data-driven lectures. However, most offline and online education frameworks collect students' feedback from question-answering data that can summarize their understanding but requires instructor's attention when students need additional help during lectures. This paper proposes a content restructure recommendation framework based on collected student feedback. We list the types of student feedback and implement a web-based framework that collects both implicit and explicit feedback for content restructuring. With a case study of four-week lectures with 50 students, we analyze the pattern of student feedback and quantitatively validate the effect of the proposed content restructuring measured by the level of student engagement.

Analysis of Preference Criteria for Personalized Web Search (개인화된 웹 검색을 위한 선호 기준 분석)

  • Lee, Soo-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • With rapid increase in the number of web documents, the problem of information overload in Internet search is growing seriously. In order to improve web search results, previous research studies employed user queries/preferred words and the number of links in the web documents. In this study, performance of the search results exploiting these two criteria is examined and other preference criteria for web documents are analyzed. Experimental results show that personalized web search results employing queries and preferred words yield up to 1.7 times better performance over the current search engine and that the search results using the number of links gives up to 1.3 times better performance. Although it is found that the first of the user's preference criteria for web documents is the contents of the document, readability and images in the document are also given a large weight. Therefore, performance of web search personalization algorithms will be greatly improved if they incorporate objective data reflecting each user's characteristics in addition to the number of queries and preferred words.

  • PDF

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

Services Innovation Using Web Technology: A Case of Consumer Adoption of Family Restaurant Web Sites (웹 기술을 활용한 서비스 혁신: 패밀리 레스토랑 웹사이트 소비자 수용 사례)

  • Lim, Se-Hun;Kim, Dae-Kil;Whang, Jae-Hoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.137-149
    • /
    • 2011
  • Today, a web site is used as a strategic method to fulfill a company's objectives. In particular, a web site provides a service for customers to find satisfaction in visiting family restaurants, and it recently has helped to attract the interest of a variety of customers. Currently, companies that manage family restaurants operate their Web sites as strategic tools and use them to perform public relations and marketing of their restaurants. This effort influences management and helps to improve the business and profitability of family restaurants. The research model of this study is an expansion of the Technology Acceptance Model (TAM) and examines whether ease of use and usefulness of family restaurant web sites influence the relationship of intention to use, actual use, and recommendation to use by gender. The results of this research would suggest that web sites are useful in establishing a marketing strategy for companies that operate family restaurants.

Web Search Personalization based on Preferences for Page Features (문서 특성에 대한 선호도 기반 웹 검색 개인화)

  • Lee, Soo-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.2
    • /
    • pp.219-226
    • /
    • 2011
  • Web personalization has focused on extracting web pages interesting to users, to help users searching wanted information efficiently on the web. One of the main methods to achieve this is by using queries, links and users' preferred words in the pages. In this study, we surveyed from the web users the features of pages that are considered important to themselves in selecting web pages. The survey results showed that the content of the pages is the most important. However, images and readability of the page are rated as high as the content for some users. Based on this result, we present a method for maintaining relative weights of major page features differently in the profile for each user, which is used for personalizing web search results. Performance of the proposed personalization method is analyzed to prove its superiority such that it yields as much as 1.5 times higher rate than the system utilizing both queries and preferred words and about 2.3 times higher rate than a generic search engine.

  • PDF

The Technique of Reference-based Journal Recommendation Using Information of Digital Journal Subscriptions and Usage Logs (전자 저널 구독 정보 및 웹 이용 로그를 활용한 참고문헌 기반 저널 추천 기법)

  • Lee, Hae-sung;Kim, Soon-young;Kim, Jay-hoon;Kim, Jeong-hwan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.75-87
    • /
    • 2016
  • With the exploration of digital academic information, it is certainly required to develop more effective academic contents recommender system in order to accommodate increasing needs for accessing more personalized academic contents. Considering historical usage data, the academic content recommender system recommends personalized academic contents which corresponds with each user's preference. So, the academic content recommender system effectively increases not only the accessibility but also usability of digital academic contents. In this paper, we propose the new journal recommendation technique based on information of journal subscription and web usage logs in order to properly recommend more personalized academic contents. Our proposed recommendation method predicts user's preference with the institution similarity, the journal similarity and journal importance based on citation relationship data of references and finally compose institute-oriented recommendations. Also, we develop a recommender system prototype. Our developed recommender system efficiently collects usage logs from distributed web sites and processes collected data which are proper to be used in proposed recommender technique. We conduct compare performance analysis between existing recommender techniques. Through the performance analysis, we know that our proposed technique is superior to existing recommender methods.

A Study on Color Recommendation System for Mobile App -Focused on the Method of Color Recommendation for the Material Design Color System (모바일 앱을 위한 배색 추천 시스템에 관한 연구 -머티리얼 디자인 컬러 시스템의 색채 추천 방법을 중심으로)

  • Hwang, Seung-Hyun;Lee, Hyun-Jhin
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.353-363
    • /
    • 2019
  • This study is for the use of color recommendation system for the color combination of mobile application. For this study, color combination methods of a material design color system that recommends harmonized colors automatically and of a mobile web application were applied to a mobile application design and a color combination experiment was carried out. Then for a survey on the experiment using the two methods, color combinations, selected colors and satisfaction with outputs were investigated on a 7-point Likert scale. And color combination characteristics of outputs were compared. It was found that the material design color palette made it easy to select colors by systematizing the regular coloring stages of fixed colors automatically, but there were differences in color compositions and color scopes of dominant color, assort color and accent colors, which are three-color combinations of mobile web application and accent color selection function was required for each design, since only primary colors and secondary colors could be selected. Moreover, chromatic colors were used a lot in the material system because of the fixed color scopes and color combination scopes and images of color combination outcomes varied depending on the color combination scopes, even when tones with a big contrast or complementary colors were selected. The role of color composition was important according to the color combination scopes.