• Title/Summary/Keyword: Weak ground

Search Result 367, Processing Time 0.033 seconds

Detection of planetary signals in extremely weak central perturbation microlensing events via next-generation ground-based surveys

  • Chung, Sun-Ju;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2013
  • Even though current microlensing follow-up observations focus on high-magnification events due to the high efficiency of planet detection, it is very difficult to do a confident detection of planets in high-magnification events with extremely weak central perturbations (i.e., the fractional deviation is ${\delta}{\leq}0.02$). For the confident detection of planets in the extremely weak central perturbation events, it is needed both the high cadence monitoring and the high photometric accuracy. A next-generation ground-based observation project, KMTNet (Korea Microlensing Telescope Network), satisfies both the conditions. Here we investigate how well planets in high-magnification events with extremely weak central perturbations are detected by KMTNet. First, we determine the probability of occurrence of events with ${\delta}{\leq}0.02$. From this, we find that for ${\leq}100M_E$ planets in the separation of $0.2AU{\leq}d{\leq}20AU$, events with ${\delta}{\leq}0.02$ occur with a frequency of more than 70%, in which d is the projected planet-star separation. Second, we estimate the efficiency of detecting planetary signals in the events with ${\delta}{\leq}0.02$ via KMTNet. We find that for main-sequence and subgiant source stars, ${\geq}1M_E$ planets can be detected more than 50% in a certain range that has the efficiency of ${\geq}10%$ and changes with the planet mass.

  • PDF

A Model Test Study on the Bearing Capacity of the Crushed Stone Pile (쇄석말뚝의 지지력 특성에 관한 모형시험 연구)

  • 이상익;박용원;김병일;윤길림
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.299-306
    • /
    • 2001
  • Crushed Stone Pile(CSP) is one of the ground improvement methods available to loose sand and clayey ground by forming compacted CSP in the weak soil layer. The effects of this method are enhancement of ground bearing capacity, reduction of settlement and prevention of lateral ground movement in cohesive layer, reduction of liquefaction potential in sandy ground. This study performs model tests in 1.0m${\times}$1.0m${\times}$1.0m and 1.5m${\times}$1.5m${\times}$l.2m model tank to observe bearing capacity of CSP treated ground. The area replacement ratio of CSP composite ground varies 20%, 30% and 40% with square grid pattern. After the composite ground was consolidated under pressure of 0.5kg/$\textrm{cm}^2$ and 1.0kg/$\textrm{cm}^2$, load tests were carried out. The results show that ultimate bearing capacity increases with area replacement ratio and the preconsolidation pressure of ground.

  • PDF

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

Seam Efficiency of Geotextile and Verification of Allowable Bearing Capacity of Soft Ground (토목섬유 봉합효율과 연약지반 허용지지력 현장검증)

  • Cho, Dae-Sung;Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.25-34
    • /
    • 2021
  • Since the dredging reclaimed land consisting of soft ground is very weak in support, the difficult and complex factors should be considered in the design to calculate accurate bearing capacity of soft ground. Recently, various reinforcement construction methods of soft ground have been designed for dredged landfills, but the stabilities are predicted by calculating conventional Meyerhof (1974) equation for trafficability in soft ground. Conventional equations increase economic costs by underestimating bearing capacity of weak ground in order to ensure constructive safety, so a modified equation has been proposed from the literature. The paper attempts to experiment and compute important factors, such as stitching fiber and seam tensile strength of geotextiles, that are not theoretically considered and can be identified in the field. In addition, The evaluation of the bearing capacity of the modified equation is verified to be stable for trafficability through the plate bearing test performed on site.

TBM considerations for soft-ground tunnels

  • Rozgonyi T. G.;Kieffer D. S.;Maidl U.;Bald Cernal
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.42-51
    • /
    • 2003
  • The global demand for underground facilities has increased substantially in the past decades, and a substantial number of underground projects have had to deal with challenging ground conditions in urban environments. Particularly challenging are weak and unstable water bearing soils. Advancements in shielded TBM tech-nology have led to significant improvements regarding the ability to control ground deformations in soft ground. Nonetheless, ground collapse may occur even when the most advanced TBM designs are employed if unexpected adverse ground conditions are encountered or if insufficient stabilizing pressure is transferred to the tunnel face. This paper reviews common approaches for face stability and face pressure transmission calculations, and provides an overview of some of the latest technological developments and considerations for soft ground TBM applica-tions.

  • PDF

A Study on Engineering Characteristics of Weak Rock Ground happened TBM Jaming accident in Tunnelling (TBM 터널 굴진시 Jamming이 발생되는 지반의 공학적 특성에 대한 연구)

  • Yu, Gil-Hwan
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.45
    • /
    • pp.60-70
    • /
    • 2008
  • Mechanized tunnelling by TBMs has been extensively adopted for last two decades. Nevertheless, only few case histories have been reported. Unlike NATM tunnels, the case histories of the weak zone have been seldom reported for the mechanized tunnelling, even in the other countries. In this study, a collapse of TBM tunnel occurred in the severely altered weak rock zones between volcaniclastic rocks and granitic rocks was briefly described. A systematic geotechnical investigation, which was performed to examine the cause of the collapse, was carried out at the site and then characteristics of the rocks in the zones were evaluated. Moreover, This study propose a guide line of estimateing the possibility of collapse in TBM tunnels through comparing experimental results with surveying results of general rocks.

  • PDF

Output Voltage Characteristics of HVDC Electric Field Mill Sensor for Different Speed Variables of Rotating Electrode

  • Kim, Young Sun;Park, Jae Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2001-2006
    • /
    • 2017
  • This paper explains the effects of the weak signal of a rotating-type electric field mill sensor fabricated for measuring the intensity of the electric field generated by high-voltage direct current (HVDC) power transmission lines. The fabricated field mill consists of two isolated electrode vanes, a motor driver, and a ground part. The sensor plate is exposed to and shielded from the electric field by means of a rotary shutter consisting of a motor-driven mechanically complementary rotor/stator pair. When the uncharged sensor plate is exposed to an electric field, it becomes charged. The rotating electrode consists of several conductive vanes and is connected to the ground part, so that it is shielded. Determining the appropriate design variables such as the speed of the vane, its shape, and the distance between the two electrodes, is essential for ensuring optimal performance. By varying the speed, the weak signal characteristics which is used to signal processing and calibration experiment are quite different. Each weak signal pattern was analyzed along with the output voltage characteristics, in order to be able to determine the intensity of the electric field generated by HVDC power transmission lines with accuracy.

Numerical Analysis on the Effect of Heterogeneous/Anisotropic Nature of Rock Masses on Displacement Behavior of Tunnel (비균질/이방성 암반에서의 터널 거동 분석을 위한 수치해석적 연구)

  • Baek, Seung-Han;Kim, Chang-Yong;Kim, Kwang-Yeom;Hong, Sung-Wan;Moon, Hyun-Koo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.939-948
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of tunnel. Tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysedby 2-D and 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of tunnel face can be possible.

  • PDF

Deformation Behavior and Reinforcement Design of a Tunnel Excavated in Weak Rock by the NATM (연약암반에 굴착되는 NATM 터널의 변형거동과 보강설계)

  • 서영호;이정인
    • Tunnel and Underground Space
    • /
    • v.3 no.2
    • /
    • pp.132-141
    • /
    • 1993
  • Laboratory and field tests were performed to find out the effectiveness of ground improvement by grouting for an urban subway tunnel that was excavated in weak rock by the NATM. Field measurements were carried out to monitor the behavior of rock mass around the tunnel and to ensure the validity of the current design of the distance form the measuring points to the tunnel face. The final converged displacement and the peroid were predicted using the gamma function. It was found that the ground improvement in terms of reduced permeability and increased stength in the self-supportability of the excavation face enabled the NATM applied in poor gorund. As the result of applying the gamma function to the predicting of displacement, the final displacement including the preceding one and the converged period could be approximately predicted at the early excavation stage.

  • PDF

The Variation of Slope Stability by Ground Water Level in Railway Lines (지하수위에 따른 철도사면의 안정성 변화)

  • Kim, Hyun-Ki;Shin, Min-Ho;Shin, Ji-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF