DOI QR코드

DOI QR Code

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face

터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구

  • Ham, Hyeon Su (Dept. of Civil and Transportation Engineering, Ajou University) ;
  • Lee, Sang Duk (Dept. of Civil System Engineering, Ajou University)
  • 함현수 (아주대학교 일반대학원 건설교통공학과) ;
  • 이상덕 (아주대학교 건설시스템공학과)
  • Received : 2018.07.12
  • Accepted : 2018.08.09
  • Published : 2018.09.30

Abstract

When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

터널 굴진면 전방에 연약대가 존재할 때에는 종방향 아칭에 의해서 굴진면 직전영역에 응력이 증가되어 터널의 안정성이 영향을 받는다. 따라서 굴진면 전방에 연약대 존재 여부 및 연약대의 특성을 파악하여 이에 대한 대비책을 마련하는 것이 중요하다. 굴진면 전방 연약대의 예측 방법은 물리탐사 및 수치해석적 방법과 터널지보 및 보강방안에 대한 연구는 많이 이루어 졌으나 굴진면 전방 연약대의 폭과 이격거리에 따른 이완영역에 대한 연구는 미비한 실정이다. 본 연구에서는 굴진면 전방에 연약대 존재 시 연약대의 폭과 이격거리에 따른 이완영역에 대하여 실내모형실험을 통해 규명하였다. 모형시험기에 주문진 자연사를 이용하여 함수비 3.8%로 모형 원지반을 조성하였으며 모형 연약대는 모형 원지반과 같은 자연건조 상태의 주문진 자연사를 샌드커튼 방식으로 강사하여 조성하였다 연약대 폭과 굴진면과 연약대 간 이격거리를 변화시키며 실험을 수행하였다. 모형시험기는 상하반단면 굴착이 구현 가능하도록 제작하였으며, 토조 바닥에 로드셀을 설치하고 지표에 변위계를 설치하여 터널굴착에 따른 연직응력 및 지표변위를 측정하였다. 지표침하는 연약대의 폭에 상관없이 굴진면과의 이격거리가 0.25D 이내에서 급격히 증가하였고, 수직응력 및 수평응력 또한 이격거리가 0.5D 이내에서부터 증가하는 경향이 나타났다. 실험결과 종방향 아칭의 영향은 터널 전방 1.0D 영역 내부터 형성된다고 판단된다.

Keywords

References

  1. Bang, J.H., Kim, K.Y., Jong, Y.H. (2007), "Development of 3D absolute displacement monitoring system and its application at the stage of tunnel construction", Journal of Korean Tunnelling and Underground Space Association, Vol. 9, No. 3, pp. 229-240.
  2. ITA Working Group No.2 Report (2011), Monitoring and Control in Tunnel Construction, pp. 23.
  3. ITA-CET (2009). Training Course Material - Tunnelling in Hot Climate Country, Monitoring of Tunnels, Riyadh.
  4. Kim, Y.S., Kim, C.D., Jung, Y.C., Lee, J.S., You, K.H. (2004), "A study on analysis method for the prediction of changes in ground condition ahead of the tunnel face", Journal of Korean Tunnelling and Underground Space Association, Vol. 6, No. 1, pp. 71-83.
  5. Kwon, O.Y., Choi, Y.K., Lee, S.D., Kim, Y.G. (2004), "Longitudinal arching characteristics around the face of a soil-tunnel with crown and face-reinforcement", Journal of the Korean Geotechnical Society, Vol. 20, No. 9, pp. 133-144.
  6. Lee, S.D. (2017), Soil mechanics, CIR Publication, Seoul, pp. 77-92.
  7. Lee, S.D. (2013), Tunnel mechanics, CIR publication, Seoul, pp. 826.
  8. Ribeiro e Sousa, L. (2004), "Learning with accident and damage associated to underground works", Geotechnical Risk in Rock Tunnels, Campos e Matos, A., Ribeiro e Sousa, L, Kleberger, J., and Lopes Pinto, P. (Editors), Talyor & Francis.
  9. Schubert, W., Steindorfer, A. (1996), "Selective displacement monitoring during tunnel excavation", Felsbau, Vol. 14, No. 2, pp. 93-98.
  10. You, C.S., Park, J.G. (2014), "Deformation behavior of tunnels crossing weak zone during excavation - numerical investigation", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 4, pp.373-386. https://doi.org/10.9711/KTAJ.2014.16.4.373