• Title/Summary/Keyword: Waves and current

Search Result 622, Processing Time 0.029 seconds

Fault determination of power transformer by using analysis of vibration signal (진동신호 분석을 이용한 변압기 고장판별법 연구)

  • Park, Su-Mun;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1152-1154
    • /
    • 1996
  • In power transformers, vibration occurs at winding, core and case due to current, voltage, temperature changing and winding reformation. Winding deformation and change of vibration signals are occurred due to electromagnetic force induced by fault current. In this paper, in normal and fault states, the trends of fundamental waves and higher harmonics are considered. To inspect the factors that affect the fundamental waves and higher harmonics, the trends are considered with varying voltage and load. Determination functions are generated and applied to signals so that normal and fault state are determined by determination functions.

  • PDF

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.

Rayleigh waves in anisotropic magnetothermoelastic medium

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen;Abo-Dahab, S.M.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.317-333
    • /
    • 2017
  • The present paper is concerned with the investigation of Rayleigh waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature, in the presence of Hall current and rotation. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories of Type-II and Type-III. Secular equations are derived mathematically at the stress free and thermally insulated boundaries. The values of Determinant of secular equations, phase velocity and Attenuation coefficient with respect to wave number are computed numerically. Cobalt material has been chosen for transversely isotropic medium and magnesium material is chosen for isotropic solid. The effects of rotation, magnetic field and phase velocity on the resulting quantities and on particular case of isotropic solid are depicted graphically. Some special cases are also deduced from the present investigation.

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata;Himanshi, Himanshi
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.395-403
    • /
    • 2022
  • The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.

Experiment on the Time-Reversal of Lamb Waves for the Application to Structural Damage Detection (구조물 손상진단을 위한 Lamb 파의 시간-역전현상에 대한 실험)

  • Go, Han-Suk;Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.913-916
    • /
    • 2007
  • In this paper, the possibility of time reversal phenomenon was investigated in damage detection of structure. In conventional lamb wave techniques, damage is identified by comparing the measured data (baseline signals) and the current data. But this method can lead to high false signal in the intact condition of structures due to environmental conditions of the structures. So in this studying, we investigate the possibility of damage detection in the aluminum plate using the time reversal phenomenon of lamb waves.

  • PDF

An Effect of Drift Current on Generation Stage of Wind Waves (風波發생에 있어서 吹送流의 影響)

  • Choi, In june
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.195-199
    • /
    • 1984
  • Effect of drift current on the first stage of wave generation by wind is studied theoretically. The viewpoint is similar to the one described by Phillips (1957) except that drift current is considered. It is found that inclusion of the effect of the drift current modifies significantly the results obtained by Phillips, particularly the resonance condition and wave spectrum.

  • PDF

Coarse Grid Wave Hindcasting in the Yellow Sea Considering the Effect of Tide and Tidal Current (조석 및 조류 효과를 고려한 황해역 광역 파랑 수치모의 실험)

  • Chun, Hwusub;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.286-297
    • /
    • 2018
  • In the present study, wave measurements at KOGA-W01 were analyzed and then the numerical wind waves simulations have been conducted to investigate the characteristics of wind waves in the Yellow sea. According to the present analysis, even though the location of the wave stations are close to the coastal region, the deep water waves are prevailed due to the short fetch length. Chun and Ahn's (2017a, b) numerical model has been extended to the Yellow Sea in this study. The effects of tide and tidal currents should be included in the model to accommodate the distinctive effect of large tidal range and tidal current in the Yellow Sea. The wave hindcasting results were compared with the wave measurements collected KOGA-W01 and Kyeockpo. The comparison shows the reasonable agreements between wave hindcastings and measured data, however the model significantly underestimate the wave period of swell waves from the south due to the narrow computational domain. Despite the poorly prediction in the significant wave period of swell waves which usually have small wave heights, the estimation of the extreme wave height and corresponding wave period shows good agreement with the measurement data.

A Reliability Study of Coastal Structures Under the Influence of Waves and Currents -Random Analysis of Fixed Structures- (파랑과 흐름을 받는 여안 구조물의 안정성에 관한 연구 -고정식 해양 구조물의 랜덤 해석-)

  • Choe, Yong-Ho;Gwon, Sun-Hong;Kim, Dae-Ung;Park, Sang-Gil
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.186-192
    • /
    • 1995
  • This paper investigates the problem of random analysis of fixed structures which are influenced by waves and current. Morison eqution was employed to deal with the wave and current load. The wave kinematics are randomly generated from the wave spectrum. The necessary statistics are calculated from the resulting response time history. The simulation results are turned out to be very sensitive to the simulation technique.

  • PDF

CMOS Circuit Designs for High Frequency Oscillation Proximity Sensor IC System (고주파 발진형 근접 센서 시스템의 집적화를 위한 CMOS 회로 설계)

  • Sung, Jung-Woo;Choi, Pyung
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 1994
  • In the following paper, the high frequency oscillation proximity sensor system, one of the sensor systems used in FA, is designed using CMOS. According to the proximity of metal objects, two differing amplitudes of sinusoidal waves are set, and by using rectifiers, dc voltages, which determine the constant current source circuit's output current levels, can be abstracted from these waves. To remove any disturbances in the dc voltage levels, a schmitt trigger is used. Some advantages of this CMOS high frequency oscillation proximity sensor are miniturization, light weight and low power disspation.

  • PDF

3D Numerical Simulation of Water Surface Variations and Velocity Fields around Permeable Submerged Breakwaters under Irregular Waves (불규칙파 조건 하에서 투과성잠제 주변의 수면변동 및 유속장에 관한 3차원 수치모의)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.153-165
    • /
    • 2018
  • In this study, the performance of irregular wave field generation of olaFlow is first verified by comparing the frequency spectrum of the generated waves by the wave-source using olaFlow and the target wave. Based on the wave performance of irregular waves of olaFlow, the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy around the three-dimensional permeable submerged breakwaters, which act as the main external forces of the salient formation, are numerically investigated. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases and as the gap width between breakwaters increases, the longshore currents become stronger. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters.