Browse > Article
http://dx.doi.org/10.12989/was.2022.35.6.395

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media  

Parveen, Lata (Department of Basic and Applied Sciences, Punjabi University)
Himanshi, Himanshi (Department of Basic and Applied Sciences, Punjabi University)
Publication Information
Wind and Structures / v.35, no.6, 2022 , pp. 395-403 More about this Journal
Abstract
The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.
Keywords
attenuation coefficient; fractional order; hall current; orthotropic medium; phase velocity; rotation; specific loss; Stoneley wave propagation; three phase-lags;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Abbas, I.A., El-Amin, M.F. and Salama, A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Fl., 30(2), 229-236. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.   DOI
2 Abbas, I.A. (2014), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.   DOI
3 Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. https://doi.org/10.1134/S102995991802008X.   DOI
4 Abbas, I.A. and Marin, M. (2018), "Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse", Iran J. Sci. Technol. T. Mech. Eng., 42(1), 57-71. https://doi.org/10.1007/s40997-017-0077-1.   DOI
5 Abouelregal, A.E., Elhagary, M.A., Soleiman, A. and Khalil, K.M. (2022), "Generalized thermoelastic-diffusion model with higher-order fractional order time-derivatives and four-phase-lags", Mech. Based Des. Struc., 50(3). https://doi.org/10.1080/15397734.2020.1730189.   DOI
6 Abd-Alla, A.N. and Abbas, I.A. (2002), "A problem of generalized magneto-thermoelasticity for an infinitely long, perfectly conducting cylinder", J. Therm. Stresses, 25(11), 1009-1025. https://doi.org/10.1080/01495730290074612.   DOI
7 Abd-Alla, A.M., Abo-Dahab, S.M. and Khan, A. (2017), "Rotational effects on magneto-thermoelastic Stoneley, Love, and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order", Comput. Mater. Continua, 53(1), 49-72.
8 Abo-Dahab, S.M. (2015), "Propagation of Stoneley waves in magneto-thermoelastic materials with voids and two relaxation times", J. Vib. Control, 21(6), 1144-1153. https://doi.org/10.1177/1077546313493651.   DOI
9 Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., 23(3), 217-225. https://doi.org/10.12989/gae.2020.23.3.217.   DOI
10 Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model", J. Therm. Stresses, 40(4), 403-419. https://doi.org/10.1080/01495739.2017.1283971.   DOI
11 Biswas, S. and Abo-Dahab, S.M. (2020), "Three dimensional thermal shock problem in orthotropic medium", J. Solid Mech., 12(3), 663-680. https://doi.org/10.22034/jsm.2020.1885944.1530.   DOI
12 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.   DOI
13 Caputo, M. (1967), "Linear model of dissipation whose Q is always frequency independent-II", Geophys. J. Roy. Astronomical Soc., 13, 529-539.   DOI
14 Ezzat, M.A. (2020), "Modeling of GN type III with MDD for a thermoelectric solid subjected to a moving heat source", Geomech. Eng., 23(4), 393-404. https://doi.org/10.12989/gae.2020.23.4.393.   DOI
15 Chadwick, P. and Windle, D.W. (1964), "Propagation of Rayleigh waves along isothermal and insulated boundaries", Proceeding of the Royal Society of London, 280, 47-71.
16 Das, P. and Kanoria, M. (2014), "Study of finite thermal waves in a magnetothermoelastic rotating medium", J. Therm. Stress, 37(4), 405-428. https://doi.org/10.1080/01495739.2013.870847.   DOI
17 Deswal, S. and Kalkal, K.K. (2014), "Plane waves in a fractional order micropolar magneto-thermoelastic half-space", Wave Motion, 51(1), 100-113. https://doi.org/10.1016/j.wavemoti.2013.06.009.   DOI
18 Hooda, R. and Gulia, S. (2019), "Mathematical modelling of stoneley wave in rotating orthotropic micropolar elastic solid media", IOSR J. Eng., 9(1), 48-54.
19 Hobiny, A.D. and Abbas, I.A. (2017), "A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity", Mech. Time-Depend. Mat., 21(1), 61-72. https://doi.org/10.1007/s11043-016-9318-8.   DOI
20 Hobiny, A. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Results Phys., 10, 385-390. https://doi.org/10.1016/j.rinp.2018.06.035.   DOI
21 Horrigue, S. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimensional fiber-reinforced anisotropic material", Mathematics, 8(9), 1609. https://doi.org/10.3390/math8091609.   DOI
22 Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theor. Appl. Mech., 41(4), 247-265. https://doi.org/ 10.2298/TAM1404247.   DOI
23 Lata, P. and Himanshi (2021), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. https://doi.org/10.12989/cme.2021.3.1.057.   DOI
24 Kumar, R. (2018), "Propagation of Stoneley waves at the boundary surface of thermoelastic diffusion solid and microstretch thermoelastic diffusion solid", Mater. Phys. Mech., 35, 87-100. https://doi.org/10.18720/MPM.3512018_12.   DOI
25 Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017),. "Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media", Applications Appl. Math., 12(1), 319-336.
26 Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III, Geomech. Eng., 19(4), 295-305. https://doi.org/10.12989/gae.2019.19.4.295.   DOI
27 Mahmou, S.R. (2014), "Effect of non-homogenity, magnetic field and gravity field on Rayleigh waves in an initially stressed elastic half-space of orthotropic material subject to rotation", J. Comput. Theor. Nanosci., 11(7), 1627-1634. https://doi.org/10.1166/jctn.2014.3542.   DOI
28 Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.   DOI
29 Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two-temperatures", Abstract Appl. Anal., 1-7. https://doi.org/10.1155/2013/583464.   DOI
30 Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Advances, 5(3), https://doi.org/10.1063/1.4914912.   DOI
31 Markov, M. (2009), "Low-frequency stoneley wave propagation at the interface of two porous half-spaces", Geophys. J. Int., 177(2), 603-608. https://doi.org/10.1111/j.1365-246X.2009.04095.x.   DOI
32 Salama, M.M., Kozae, A.M., Elsafty, M.A. and Abelaziz, S.S. (2015), "A half-space problem in the theory of fractional order thermoelasticity with diffusion", Int. J. Scientific Eng. Res., 6(1).
33 Oldham, K.B. and Spainer, J. (1974), The fractional calculus, Academic Press. New York, London.
34 Othman, M.I.A. and Abbas, I.A. (2014), "Effect of rotation on plane waves in generalized thermomicrostretch elastic solid: comparison of different theories using finite element method", Can. J. Phys., 92(10). https://doi.org/10.1139/cjp-2013-0482.   DOI
35 Saeed, T., Abbas, I.A. and Marin, M. (2019), "GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.   DOI
36 Singh, S. and Tochhawng, L. (2019), "Stoneley and Rayleigh waves in thermoelastic materials with voids", J. Vib. Control, https://doi.org/10.1177/1077546319847850.   DOI
37 Shahsavari, D., Karami, B. and Li, L. (2018), "A higher-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.   DOI
38 Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38 https://doi.org/10.12989/sem.2008.28.1.019.   DOI
39 Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Analele Universitatii Ovidius Constanta-Seria Mathematica, 22(2), 151-176. https://doi.org/10.2478/auom-2014-0040.   DOI
40 Shaw, S. and Othman, M.I.A. (2019), "Characteristics of Rayleigh wave propagation in orthotropic magneto-thermoelastic half-space: An Eigen function expansion method", Appl. Math. Model., 67(47), 605-620. https://doi.org/10.1016/j.apm.2018.11.019.   DOI
41 Stoneley, R. (1924), "Elastic waves at the surface of separation of two solids", Proceeding of Royal Society of London, 106, 416-428.
42 Tomar, S.K. and Singh, D. (2006), "Propagation of stoneley waves at an interface between two microstretch elastic half-spaces", J. Vib. Control, 12(9), 995-1009. https://doi.org/10.1177/1077546306068689.   DOI
43 Tripathi, J.J., Warbhe, S., Deshmukh, K.C. and Verma, J. (2018), "Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source", Multidiscip. Model. Mater. Struct., 14(1), 2-15.
44 Yadav, R., Kumar, K. and Deswal, S. (2015), "Two temperature thermal viscoelasticity with fractional order strain subjected to moving heat source", J. Mathematics, 1-13. https://doi.org/10.1155/2015/487513.   DOI
45 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.295.   DOI
46 Zakaria, M. (2014), "Effect of hall current on generalized magneto-thermoelasticity micropolar solid subjected to ramp-type heating", Int. Appl. Mech., 50(1), 92-104. https://doi.org/10.1007/s10778-014-0615-0.   DOI
47 Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137. https://doi.org/10.1016/j.jpcs.2019.109213.   DOI
48 Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer, K.S. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles", Entropy, 22(10), https://doi.org/10.3390/e22101070.   DOI