• Title/Summary/Keyword: Wavelet transform domain

Search Result 406, Processing Time 0.027 seconds

Active Noise Control Using Wavelet Transform Domain Least Mean Square (웨이블릿 변환역 최소평균자승법을 이용한 능동 소음 제어)

  • Kim, Doh-Hyoung;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.269-273
    • /
    • 2000
  • This paper describes Active Noise Control (ANC) using Discrete Wavelet Transform (DWT) Domain Least Mean Square (LMS) Method. DWT-LMS is one of the transform domain input decorrelation LMS and improves the convergence speed of adaptive filter especially when the input signal is highly correlated. Conventional transform domain LMS's use Discrete Cosine Transform (DCT) because it offers linear band signal decomposition and fast transform algorithm. Wavelet transform can project the input signal into the several octave band subspace and offers more efficient sliding fast transform algorithm. In this paper, we propose Wavelet transform domain LMS algorithm and shows its performance is similar to DCT LMS in some cases using ANC simulation.

  • PDF

Application of wavelet transform in electromagnetics (Wavelet 변환의 전자기학적 응용)

  • Hyeongdong Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1244-1249
    • /
    • 1995
  • Wavelet transform technique is applied to two important electromagnetic problems:1) to analyze the frequency-domain radar echo from finite-size targets and 2) to the integral solution of two- dimensional electromagnetic scattering problems. Since the frequency- domain radar echo consists of both small-scale natural resonances and large-scale scattering center information, the multiresolution property of the wavelet transform is well suited for analyzing such ulti-scale signals. Wavelet analysis examples of backscattered data from an open- ended waveguide cavity are presented. The different scattering mechanisms are clearly resolved in the wavelet-domain representation. In the wavelet transform domain, the moment method impedance matrix becomes sparse and sparse matrix algorithms can be utilized to solve the resulting matrix equationl. Using the fast wavelet transform in conjunction with the conjugate gradient method, we present the time performance for the solution of a dihedral corner reflector. The total computational time is found to be reduced.

  • PDF

A Study on the Design of a Digital Hearing Aids Signal Processing System in the Wavelet Transform Domain (WT평면에서의 디지탈 청각 보조 신호 처리 시스템의 설계)

  • 이현철;석광원
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.347-354
    • /
    • 1996
  • This paper presents digital hearing aids signal processing system in WT(wavelet transform) domain. For implementation of hearing aids in WT domain, the gain in frequency domain is approximated in WT domain. We also present the gain selection algorithm to deal with the change of input signal power. Most transform methods produce blocking effect, and this effect degrades the convergence rate of feedback canceller. As a solution, we proposed wavelet transform bascd feedback canceller. To evaluate the performance, we compared it with LOT (lapped orthogonal transform) method in the frequency domain. This system has not shown the blocking effect, and improves convergence rate as compared with the LOT based feedback canceller.

  • PDF

A Study on the Application of Wavelet Transform to Faults Current Discrimination (Wavelet 변환을 이용한 고장전류의 판별에 관한 연구)

  • 조현우;정종원;윤기영;김태우;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.213-217
    • /
    • 2002
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to courier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier, and more useful method than the FFW (Fast courier Transform).ransform).

  • PDF

Identification of Tool Breakage Signal Using Wavelet Transform of Feed Motor Current in Milling Operations (이송모터 전류신호의 Wavelet 변환에 의한 공구파손 식별)

  • Park, H.Y.;Kim, S.H.;Lee, M.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.31-37
    • /
    • 1996
  • This Paper is concerned with effective signal identification method for tool breakage and micro chipping using discrete wavelet transform of feed motor current in milling operations. The wavelet transform uses an analyzing waveletfunction which is localized in both frequency and time domain to detect subtle time localized changes in input signals. The changing pattern of wavelet coefficient is continuously compared to detect tool breakage and micro chipping over one spindle revolution. The results indicate that the wavelet transform can identify tool failure with much greater sensi- tivity than the time domain monitoring and frequency domain monitoring such as FFT. Experimental results are presented to support the proposed scheme.

  • PDF

Image registration using Hough transform and Phase correlation in Wavelet domain

  • Summar, Bhuttichai;Chitsobhuk, Orachat;Kasemsiri, Watjanapong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2006-2009
    • /
    • 2005
  • This paper presents a method for registering images using phase correlation technique in fourier domain, hough transform and multi-resolution wavelet. To register images, source and input images are transformed to wavelet domain. An angular transition can be obtained by applying hough transform technique followed by phase correlation. Then we apply phase correlation technique to find x-axis and y-axis transition. We apply wavelet transform to reduce processing time and also use its coefficients as edge information instead of canny detector. With multi-resolution property of wavelet transform, registration time can be greatly reduced. After we get all transition parameters, we transform the input images according to these parameters. Then, we compose and blend all images into a new large image with details of all source images. From our experiment, we can find the accurate transition both x-y translation and angular transition with less error.

  • PDF

Analysis method for the Measured Track Geometry Data using Wavelet Transform (웨이브렛 변환을 이용한 궤도틀림 분석)

  • Lee, In-Kyu;Kim, Sung-Il;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.187-192
    • /
    • 2006
  • The regularity of railway track alignment is a crucial component fur maintaining travel safety and the smoothness of passenger ride. The conventional spectral analysis has been considered to estimate the severity of the track irregularity from measured data. The time domain data used to be changed into the frequency domain by Fourier transform. Because the measuring points can be regarded as the time points, the spatial-frequency can be introduced instead of the time-frequency. Although FFT(Fast Fourier Transform) and/or PSD(Power Spectral Density) function could provide fairly localized information within frequency domain, but chronical configurations of data could be missed. In this study, we attempt to apply the Morlet wavelet transform for the purpose of a frequency-time-domain analysis rather than a frequency-domain analysis. The applicability of wavelet transform is examined for the estimation of the track irregularity with real measured track data on the section of Kyoung-bu line by EM-120 measuring vehicle. It is shown that the wavelet transform can be an effective tool to manage the track irregularity.

Suggestion of the Parallel Algorithm for the Signal Estimation in the Wavelet Transform Domain (웨이브렛 변환평면에서의 병렬 신호 추정 알고리듬의 제안)

  • 김종원;김성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1188-1197
    • /
    • 1995
  • This paper describes an algorithm that reduces computational requirement of the Kalman filter and estimates the signal efficiently. The reference signals are mapped onto the orthogonal wavelet transform domain so that the eigenvalue spread of its autocorrelation matrix could be smaller than that in the time domain. In the wavelet transform domain the autocorrelation matrix is nearly diagonal. Therefore, the transformed signal can be decomposed each orthogonal elements. The Kalman filter can be applied to each orthogonal elements and computational requirement is reduced. The possibility of applying the parallel Kalman filter was verified through the theory and simulation. The eigenvalue spread in the wavelet transform domain is smaller 8.35 times than that in the time domain and the computational requirement is reduced from 1.4 times to 2. 93 times than that of the conventional Kalman filter.

  • PDF

A Study on the Time-Frequency Analysis of Transient Signal using Wavelet Transformation (Wavelet 변환을 이용한 과도신호의 시간-주파수 해석에 관한 연구)

  • 이기영;박두환;정종원;김기현;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.219-223
    • /
    • 2002
  • Voltage and current signals during impulse tests on transformer are treated as non-stationary signals. A new method incorporating signal-processing method such as Wavelets and courier transform is proposed for failure identification. It is now possible to distinguish failure during impulse tests. The method is experimentally validated on a transformer winding. The wavelet transforms enables the detection of the time of occurrence of switching or failure events. After establishing the time of occurrence, the original waveform is split into two or more sections. The wavelet transform has ability to analysis the failure signal on time domain as well as frequency domain. Therefore, the wavelet transform is superior than courier transform to analysis the failure signal. In this paper, the fact was proved by real data which was achieved.

  • PDF

A Study on the Identification of the EMG Signal in the Wavelet Transform Domain (웨이브렛 변환평면에서의 근전도신호 인식에 관한 연구)

  • 김종원;김성환
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.305-316
    • /
    • 1994
  • All physical data in the real world are nonstationary signals that have the time varying statistical characteristics. Although few algorithms suitable to process the nonstationary signals have ever been suggested, these are treated the nonstationary signals under the assumption that the nonstationary signal is a piece-wise stationary signal. Recently, statistical analysis algorithms for the nonstationary signal have concentrated so much interest. In this paper, nonstationary EMG signals are mapped onto the orthogonal wavelet transform domain so that the eigenvalue spread of its autocorrelation matrix could be more smaller than that in the time domain. Then the model in the wavelet transform domain and an algorithm to estimate the model parameters are suggested. Also, an test signal generated by a white gaussian noise and the EMG signal are identified, and the algorithm performance is considered in the sense of the mean square error and the evaluation parameters.

  • PDF