• Title/Summary/Keyword: Wavelet threshold denoising

Search Result 46, Processing Time 0.025 seconds

Gamma spectrum denoising method based on improved wavelet threshold

  • Xie, Bo;Xiong, Zhangqiang;Wang, Zhijian;Zhang, Lijiao;Zhang, Dazhou;Li, Fusheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1771-1776
    • /
    • 2020
  • Adverse effects in the measured gamma spectrum caused by radioactive statistical fluctuations, gamma ray scattering, and electronic noise can be reduced by energy spectrum denoising. Wavelet threshold denoising can be used to perform multi-scale and multi-resolution analysis on noisy signals with small root mean square errors and high signal-to-noise ratios. However, in traditional wavelet threshold denoising methods, there are signal oscillations in hard threshold denoising and constant deviations in soft threshold denoising. An improved wavelet threshold calculation method and threshold processing function are proposed in this paper. The improved threshold calculation method takes into account the influence of the number of wavelet decomposition layers and reduces the deviation caused by the inaccuracy of the threshold. The improved threshold processing function can be continuously guided, which solves the discontinuity of the traditional hard threshold function, avoids the constant deviation caused by the traditional soft threshold method. The examples show that the proposed method can accurately denoise and preserves the characteristic signals well in the gamma energy spectrum.

A Study on Denoising Methods using Wavelet in AWGN environment (AWGN 환경에서 웨이브렛을 이용한 잡음 제거 방법에 관한 연구)

  • 배상범;김남호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.853-860
    • /
    • 2001
  • This paper presents the new two denoising methods using wavelet. One is new spatially selective noise filtration(NSSNF) using spatial correlation and the other is undecimated discrete wavelet transform (UDWT) threshold-based. NSSNF got the flexible gain special property of SNR adding new parameter at the existing SSNF and UDWT had superior denosing effect than orthogonal wavelet transform(OWT) applied soft-threshold by applied hard-threshold. We selected additive white gaussian noise(AWGN) in this test environment. Also we analyzed and compared ousting denoising method using SNR as standard of judgement of improvemental effect.

  • PDF

An Effective Denoising Method for Images Contaminated with Mixed Noise Based on Adaptive Median Filtering and Wavelet Threshold Denoising

  • Lin, Lin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.539-551
    • /
    • 2018
  • Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.

Denoising Algorithm using Wavelet (웨이브렛을 이용한 잡음 제거 알고리즘)

  • 배상범;김남호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1139-1145
    • /
    • 2002
  • Wavelet transformed data can filter signal with each frequency band, because it includes detail information about original signal. Therefore, in this paper, important two noises were removed by wavelet. About AWGN environment UDWT(undecimated discrete wavelet transform), applying hard-threshold, was used and about impulse noise environment, it can be possible to recognize edge of original signal as well as superior denoising effect by using two methods, denoising by threshold and slope of signal by wavelet. SNR was used as a judgemental criterion of a denoising effect and Blocks and DTMF(dual tone multi frequency) were used as a test signal.

One-dimensional and Image Signal Denoising Using an Adaptive Wavelet Shrinkage Filter (적응적 웨이블렛 수축 필터를 이용한 일차원 및 영상 신호의 잡음 제거)

  • Lim, Hyun;Park, Soon-Young;Oh, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.3-15
    • /
    • 2000
  • In this paper we present a new image denoising filter that can suppress additive noise components while preserving signal components in the wavelet domain. The proposed filter, which we call an adaptive wavelet shrinkage(AWS) filter, is composed of two operators: the wavelet killing operator and the adaptive shrinkage operator. Each operator is selected based on the threshold value which is estimated adaptively by using the local statistics of the wavelet coefficients. In the wavelet killing operation, the small wavelet coefficients below the threshold value are replaced by zero to suppress noise components in the wavelet domain. The adaptive shrinkage operator attenuates noise components from the wavelet components above the threshold value adaptively. The experimental results show that the proposed filter is more effective than the other methods in preserving signal components while suppressing noise.

  • PDF

Image Signal Denoising by the Soft-Threshold Technique Using Coefficient Normalization in Multiwavelet Transform Domain (멀티웨이블릿 변환영역에서 계수정규화를 이용한 Soft-Threshold 기법의 영상신호 잡음제거)

  • Kim, Jae-Hwan;Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.255-265
    • /
    • 2007
  • In case of wavelet coefficients have correlation, in image signal denoising using wavelet shrinkage denoising method, the denoising effect for the image signal is reduced when the wavelet shrinkage denoising method is used. The coefficients of multiwavelet transform have correlation by pre-filters. To solve the degradation problem in multiwavelet transform, V Sterela suggested a new pre-filter for the Universal threshold or weighting factors to the threshold. In this paper, to improve the denoising effect in the multiwavelet transform, the coefficient normalizing method that the coefficient are divided by estimated noise deviation is adopted to the transformed multiwavelet coefficients in the course of wavelet shrinkage technique. And the thresholds of universal, SURE and GCV are estimated using normalized coefficients and tried to denoise by the wavelet shrinkage technique. We compared PSNRs of denoised images for each thresholds and confirmed the efficiency of the proposed method.

  • PDF

Image Restoration Based on Wavelet Packet Transform with AA Thresholding (웨이블릿 패킷 변환과 AA임계 설정 기반의 영상복원)

  • Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1122-1128
    • /
    • 2007
  • The denoising for image restoration based on the Wavelet Packet Transform with AA(Absolute Average) making-threshold is presented. The wavelet packet transform leads to be better in the part of high frequency than wavelet transform to eliminate noise. And the existing threshold determination is used standard deviation estimated results in increasing the noise and threshold, and damaging an image quality. In addition that is decreased image restoration PSNR by using the same threshold in spite of changing image because of installing a threshold in proportion of noise size. In contrast the AA thresholding method with wavelet packet is adapted by changing image to set up threshold by statistic quantity of resolved image and is avoided an extreme impact. The results on the experiment has improved 10% and 5% over than the denoising based on simple wavelet transform and wavelet packet respectively.

Image Denosing Based on Wavelet Packet with Absolute Average Threshold (절대평균임계값을 적용한 웨이블릿 패킷 기반의 영상 노이즈 제거)

  • Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.605-608
    • /
    • 2007
  • The denoising for image restoration based on the Wavelet Packet with absolute average threshold is presented. The Existing method is used standard deviation estimated results in increasing the noise and threshold, and damaging an image quality. In addition that is decreased image restoration PSNR by using the same threshold in spite of changing image because of installing a threshold in proportion of noise size. In contrast, the absolute average threshold with wavelet packet is adapted by changing image to set up threshold by statistic quantity of resolved image and is avoided an extreme impart. The results on the experiment has improved 10% and 5% over than the denoising based on simple wavelet transform and wavelet packet respectively.

  • PDF

A Study on Denoising Method using Wavelet in Impulse Noise Environment (임펄스 노이즈 환경에서 웨이브렛을 이용한 노이즈 제거 방법에 관한 연구)

  • 배상범;김남호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.513-518
    • /
    • 2002
  • This paper presents the new method for removing impulse noise using wavelet. Time and frequency-localization capabilities in denoising can provide excellent specialties comparing with the existing methods, because of including detail information of signal. The method in this paper, using denoising by threshold and slope of signal by wavelet, has superior denoising effect and can recognize edge of original signal. For objective judgement, the test signals are used HeaviSine and DTMF and this paper simulated by test signals which have added to impulse noise of different site individually.

Translation-invariant Wavelet Denoising Method Based on a New Thresholding Function for Underwater Acoustic Measurement (수중 음향 측정을 위한 새로운 임계치 함수에 의한 TI 웨이블렛 잡음제거 기법)

  • Choi, Jae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1149-1157
    • /
    • 2006
  • Donoho et al. suggested a wavelet thresholding denoising method based on discrete wavelet transform. This paper proposes an improved denoising method using a new thresholding function based on translation-invariant wavelet for underwater acoustic measurement. The conventional wavelet thresholding denoising method causes Pseudo-Gibbs phenomena near singularities due to the lack of translation-invariant of the wavelet basis. To suppress Pseudo-Gibbs phenomena, a denoising method combining a new thresholding function based on the translation-invariant wavelet transform is proposed in this paper. The new thresholding function is a modified hard-thresholding to each node according to the discriminated threshold so as to reject unknown external noise and white gaussian noise. The experimental results show that the proposed method can effectively eliminate noise, extract characteristic information of radiated noise signals.