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Adverse effects in the measured gamma spectrum caused by radioactive statistical fluctuations, gamma
ray scattering, and electronic noise can be reduced by energy spectrum denoising. Wavelet threshold
denoising can be used to perform multi-scale and multi-resolution analysis on noisy signals with small
root mean square errors and high signal-to-noise ratios. However, in traditional wavelet threshold
denoising methods, there are signal oscillations in hard threshold denoising and constant deviations in
soft threshold denoising. An improved wavelet threshold calculation method and threshold processing
function are proposed in this paper. The improved threshold calculation method takes into account the
influence of the number of wavelet decomposition layers and reduces the deviation caused by the in-
accuracy of the threshold. The improved threshold processing function can be continuously guided,
which solves the discontinuity of the traditional hard threshold function, avoids the constant deviation
caused by the traditional soft threshold method. The examples show that the proposed method can
accurately denoise and preserves the characteristic signals well in the gamma energy spectrum.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In gamma spectrometry, owing to the influence of radioactive
statistical fluctuations, gamma ray scattering, and electronic
noise, the measured energy spectrum data has a certain random
distribution [1,2]. This random distribution adversely affects the
processing of subsequent energy spectrum data such as peak
position determination, net peak area calculation, and back-
ground subtraction [3—5]. To accurately and qualitatively quan-
tify the energy spectrum, it is first necessary to denoise the
energy spectrum data. Commonly used gamma energy spectrum
denoising methods include the arithmetic sliding average
method, the center of gravity method, and the wavelet threshold
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denoising method [6—10]. Among these methods, wavelet
threshold denoising exhibits satisfactory local characteristics in
both the time and frequency domains; it can be used for multi-
resolution analysis. Moreover, it is highly suitable for the anal-
ysis and denoising of abrupt signals and has several practical
applications such as image denoising [11—13], biomedical signal
processing [14,15], Energy spectrum signal denoising [ 16—19],etc.
Many studies have shown that the energy spectrum signals
denoised by the wavelet threshold have a higher signal-to-noise
ratios (SNRs) and smaller root mean square errors (RMSEs) and
can better preserve the characteristic signals compared to other
denoising techniques [20—22]. Commonly used wavelet
threshold denoising methods include hard threshold denoising
and soft threshold denoising. However, following energy spec-
trum signal reconstruction using hard threshold denoising, the
signal oscillation phenomenon (pseudo Gibbs phenomenon) oc-
curs, which causes discontinuity in the energy spectrum;
Furthermore, there is constant deviation in the reconstructed
energy spectrum signals denoised using the soft threshold; thus,
their approximations are less accurate [23—26]. Therefore, based
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on the traditional wavelet threshold denoising principle, this
paper proposes a new threshold calculation method and
threshold processing function, which are used to denoise gamma
spectroscopy data. Finally, to prove the superiority of the pro-
posed method, its results are compared with those obtained using
the five-point arithmetic average method, the five-point centre-
of-gravity method, and the traditional wavelet hard and soft
threshold denoising methods.

2. Wavelet threshold denoising: principle and steps

Measured gamma spectra can be considered mixed spectra
composed of low-frequency real energy spectra and high-
frequency noise:
fi=si+x; i=1,2,--- N, (1)
where f; is the measured gamma energy spectrum, s; is the real
gamma energy spectrum, x; is the noise signal, i is energy channel,
and N is the signal length.

Wavelet threshold denoising uses the feature that noise is
usually in the high-frequency band. The threshold is processed by
the decomposed wavelet high-frequency coefficients, and then the
inverse wavelet transform is used to reconstruct the signal to
remove high-frequency noise.

The main steps of wavelet threshold denoising are as follows:

1) Select a suitable wavelet basis function and number of
decomposition layers to perform multi-scale decomposition
on f;;

2) Design a threshold calculation method and threshold processing
function;

3) Use the threshold value obtained in the second step and the
threshold processing function to limit the wavelet coefficients
obtained in the first step;

4) Reconstruct the energy spectrum information.

3. Wavelet threshold denoising
3.1. Wavelet basis function

There are many wavelet basis functions that can be used for
threshold denoising [27—29]. Table 1 lists the characteristics of
some commonly used wavelet basis functions.

Considering the various characteristics of a wavelet basis func-
tion, combined with the characteristics of a large number of
mutated signals in gamma spectroscopy data, Daubechies, Symlets,
Coiflets, and other three series of wavelets can be used. To select the
optimal wavelet basis function, wavelet threshold denoising is
performed using different wavelet basis functions, and the SNRs
and RMSEs of the reconstructed gamma spectrum signals after
denoising are compared, as shown in Table 2. Based on the results
of Table 2, we selected the sym6 wavelet basis function (see

Table 1
Main characteristics of commonly used wavelet basis functions.

Table 2
Signal-to-noise ratio and root mean square error of the energy spectrum signals
after denoising using various wavelet basis functions.

Wavelet basis function SNR  RMSE Wavelet basis function SNR  RMSE

Sym4 43.03 537 DB6 4290 5.45
Sym5 4293 543 DB7 4237 5.79
Sym6 4322 520 DB8 4276 5.54
Sym7 41.63 631  Coif2 42.35 5.80
Syms8 4245 5.73  Coif3 4271 5.57
Db4 42.08 5.99 Coif4 43.23 5.24
Db5 42,68 5.52  Coif5 4331 5.19

Table 3

Denoising effect evaluation of Gaussian signal with white noise.
Denoising Methods S SNR RMSE
Five-point arithmetic average 1.32 27.39 5.15
Five-point center of gravity 1.67 23.69 7.88
Hard threshold 0.58 28.74 441
Soft threshold 0.82 29.52 4.03
New threshold 1.01 29.49 4.04

Table 3).

3.2. Wavelet threshold

The wavelet threshold has a great influence on the denoising
effect. When the threshold is too small, denoising may be incom-
plete and interference information may remain; when the wavelet
threshold is too large, useful information may be lost. At present,
the unified threshold is widely used [30,31], which is based on the
Gaussian noise model and is derived from independent normal
variable decision theory:

A=0v2InN (2)

where N is the signal length and ¢ is the standard deviation in the
noise.

In practical applications, the signal length N is fixed for a
particular detector; however, the noise standard deviation ¢ needs
to be estimated; this is commonly carried out using the following
equation:

_ median(|d;(k)|]

0.6745 3)

where j is the wavelet decomposition scale and median is the in-
termediate value function.

The influence of the number of decomposition layers is not
considered when Equation (2) is used to calculate the threshold.
However, in a wavelet transform, as the number of decomposition
layers increases, the noise in the wavelet detail coefficients de-
creases; thus, the threshold calculated by Equation (2) is not ac-
curate. Moreover, in the gamma energy spectrum, although the

Wavelet basis function Orthogonality Symmetry Tight support Regularity Vanishing moment order
Haar yes Symmetry yes yes 1

Daubechies(dbN) yes Approximate symmetry yes yes N

Symlets(symN) yes Approximate symmetry yes yes N

Coiflets(coifN) yes Approximate symmetry yes yes 2N

Biorhogonal (biorN,Ngq) no Asymmetry yes yes N;-1
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characteristic signals are Gaussian distribution, the noise is not
Gaussian white noise [21,22], this effect has a negative impact when
unified threshold denoising is applied directly.

When calculating the threshold using Equation (2), a coefficient
u is additionally introduced. Thus, the threshold decreases with an
increase in the number of decomposition layers. The influence of
noise standard deviation and the number of decomposition layers
of the wavelet transform on the calculated threshold is considered
as

u=1/1n<i2+1) (4)

where i is the number of decomposition layers of the wavelet
transform.
The new threshold calculation function is as follows:

A=p-0v2InN (5)

3.3. Threshold processing function

Threshold processing is the embodiment of a multi-wavelet
coefficient processing strategy, which is a key step in wavelet
threshold denoising. Current commonly used threshold processing
functions have hard and soft threshold processing functions
[30,31].

1) Hard threshold processing

When the absolute value of the wavelet coefficient is less than a
given threshold, the coefficient is set to 0, and when the absolute
value is greater than the threshold, its original value is retained.
This function can be expressed as

_JCIC =4
CA*{0,|C\<A ®)

where C is the wavelet coefficient, 1 is the threshold value, and C; is
the wavelet coefficient after threshold processing.

2) Soft threshold processing

When the absolute value of the wavelet coefficient is less than a
given threshold, the coefficient is set to 0. When the absolute value
is greater than the threshold, the threshold is subtracted from the
original value. This function is expressed as

a={

Hard threshold processing only retains large wavelet co-
efficients; it sets the small wavelet coefficients to zero and exhibits
discontinuity. Following signal reconstruction, oscillations (pseudo-
Gibbs phenomenon) occur, which causes loss in the continuity of the
spectrum.

The smaller wavelet coefficients are set to zero by the soft
threshold processing; it also reduces the larger wavelet coefficients
to zero. Although the processed wavelet coefficients exhibit a good
overall continuity, there is a constant deviation, resulting in recon-
structed signals and originals. The signal approximation is reduced.

sign(C)(|C| — A), |C[ > A
101 <A (7)

3) Improved threshold

Addressing the shortcomings of traditional hard and soft
thresholds, this paper proposes an improved threshold processing

strategy to smoothen the measured gamma spectroscopy data. The
improved threshold function is as follows:

. A
o { sign(C) <|c W)"C' > )
A= e -4
0 .|Cl< A

The new threshold function is second-order steerable and ex-
hibits good continuity. When |C| —, the characteristics of the soft
threshold function are presented; when |C|>>}, the new threshold
function considers y = |C| as the asymptote; as |C| continues to
increase, Gy is approaching |C| and exhibiting the characteristics of a
hard threshold function. The new threshold function avoids the
discontinuity of the hard threshold function and the constant de-
viation of the soft threshold function.

4. Case analysis

To verify the method proposed in this paper, the measured
gamma spectroscopy data are denoised by a five-point arithmetic
averaging method, five-point center of gravity method, hard
threshold, soft threshold, and new threshold processing method
discussed in this paper. The results obtained by various methods
are compared in Fig. (1). In the wavelet transform, sym®6 is selected
as the wavelet basis function, and the number of decomposition
layers is 4 (see Fig. 2).

The figure shows that after denoising the original spectrum using
the five methods, the main features of the spectrum are constant and
the statistical fluctuations in the original spectrum are suppressed.
Among them, the five-point arithmetic average and five-point center
of gravity methods have a slightly stronger denoising effect; how-
ever, noise is still detected at the partial inflection point of the curve
(Figs. 1(a), 1(b)). The traditional soft threshold and new threshold
denoising methods discussed in this paper have obtained a smoother
spectral line and better denoising effect, compared with the other
methods. However, there is a deviation in the curve after soft
threshold processing (Fig. 1(e)), which may cause partial character-
istic signal loss. To further evaluate the effects of the various
denoising methods, a quantitative analysis is required. In this study,
the smoothness, RMSE, and SNR are employed for this analysis. In
the experimental data, the energy spectrum data of the background
model are assumed to be noise, and the data of U, Th, K and mixed
models are composed of real signals and noise signals.

1) Smoothness

Smoothness describes the smoothness of the line after denois-
ing, generally expressed as the ratio of the variance of the spectral
data after noise reduction to the variance of the original spectrum
data, as follows:

s | Sk 1)~y ©)
Sialf(k+1) = f(k)®

where f is the original energy spectrum data; y is the denoised

energy spectrum data; k is the channel address; and N is the

number of sampling points. The smaller is the S value, the smoother
is the line and the better is the denoising.

2) Signal-to-noise ratio

The SNR describes the ratio between the signal and the noise.
The larger its value, the better the denoising effect.
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Z;:L]fZ(k) (10)

SNR=10 log
Shalf(k) — y(k))?

3) Root mean square error

The RMSE can be used to measure the difference between the
denoised signal and the real signal by reflecting the square root of
the mean of the squared deviation of the reconstructed signal from
the original signal. The smaller the value, the closer the denoised
signal is to the real signal, and the better is the denoising effect. The
RMSE expression is as follows:

‘l N
RMSE=, | & ; [f (k) — y(k))* (11)

In order to evaluate the denoising effect of the methods studied
more accurately, first a Gaussian signal with three characteristic
peaks added with white noise is simulated. The function of the
Gaussian signal is as follows:

(x-b3)

3 (12)

In the function, x is channels of the signal, x =1, 2, ...,1000; a is
the peak count, a; = 500, a; = 300, az = 100; b is the number of
channels where the peak is located, b; = 400, b, = 600, b3 = 800; ¢
is the standard deviation, c; = 30, ¢c; = 40, c3 = 50. white noise
with a signal-to-noise ratio of 30 (SNR = 30) to the signal is added
as follows:

The noisy signals are denoised using the five methods studied,
the results of above three indications are as follows:

From the results, the new method discussed in this paper has
the best smoothness, which is close to 1. Compared with the
traditional method, the SNR of the three wavelet transforms has
been improved. The soft-threshold denoising and the new
threshold denoising have the highest signal-to-noise ratio.
Compared with the traditional method, the three wavelet trans-
forms of the RMSE are smaller.

In order to further verify the denoising effect of the research
method, the measured signal obtained from the standard model
was used for quantitative analysis to evaluate the effect of the
research method in practical application. The measured data are U,
Th, K and mixed models of a model station in China. The quanti-
tative analysis results are as follows:

The quantitative evaluation of the five energy spectrum
smoothing methods is shown in Tables 4—7. As shown in
Tables 4—7, the five-point arithmetic average method exhibits the
lowest smoothness, suggesting that the smoothness of the line
after processing is the best; in contrast, the five-point center of
gravity method exhibits the highest smoothness, suggesting that
the smoothness of the line is the worst after processing. The three

(x-5)*
2c2

+ase 2

(x-bp)°

S(x)=ae >

+ ase

Table 4

Energy spectrum denoising effect evaluation of mixed model.
Denoising Methods S SNR RMSE
Five-point arithmetic average 0.60 16.47 114.14
Five-point center of gravity 1.56 33.17 16.69
Hard threshold 1.07 44.48 4.54
Soft threshold 0.99 39.13 8.40

New threshold 1.01 42.80 5.52

Table 5

Energy spectrum denoising effect evaluation of K model.
Denoising Methods S SNR RMSE
Five-point arithmetic average 0.62 16.68 24.23
Five-point center of gravity 1.53 33.42 3.53
Hard threshold 1.05 33.56 3.47
Soft threshold 0.98 30.96 4.68
New threshold 1.02 32.62 3.87

Table 6

Energy spectrum denoising effect evaluation of U model.
Denoising Methods S SNR RMSE
Five-point arithmetic average 0.62 16.69 24.23
Five-point center of gravity 1.53 3342 3.53
Hard threshold 1.05 33.55 347
Soft threshold 0.98 30.96 4.68
New threshold 1.02 32.62 3.87

Table 7

Energy spectrum denoising effect evaluation of Th model.
Denoising Methods S SNR RMSE
Five-point arithmetic average 0.64 17.77 110.0
Five-point center of gravity 1.47 34.41 16.19
Hard threshold 1.06 43.98 5.38
Soft threshold 0.99 39.47 9.05
New threshold 1.01 42.21 6.60

wavelet threshold denoising methods are all around 1.0. The
smoothness value of improved threshold method is close to the
smoothness value obtained by the traditional soft threshold
method; however, it is improved compared with the traditional
hard threshold.

In Tables 4—7, the arithmetic-average and center of gravity
methods have relatively low SNRs, and the denoising effects are
poor, while the three wavelet threshold denoising methods have
relatively high SNRs. The improved threshold denoising method
exhibits an SNR close to that of the hard threshold method and is
improved relative to the soft threshold method. The difference
between the SNR values is low, indicating that the denoising effects
of the three wavelet threshold methods are all good.

RMSE can be used to describe the difference between the real
signal and the processed signal. The RMSEs of the five-point center
of gravity and five-point arithmetic average methods are large,
indicating that the denoised and real signals are generated by the
two methods and exhibit large deviations. The root mean square
errors of the hard threshold method, soft threshold method, and
new threshold method are all small, indicating that the energy
spectrum after denoised by the three wavelet transforms is closer
to the real signal. The RMSE is relatively large, and the processed
characteristic signal is also quite different from the original curve,
indicating that there is a constant deviation in the soft threshold
denoising method. The traditional hard threshold and improved
threshold methods exhibit a smaller RMSE and better preserve the
characteristic signals in the spectral data.

In summary, the following conclusions can be drawn from the
energy spectrum smoothing results of models:the improved
threshold denoising method has higher SNR and smaller RMSE
compared with the arithmetic-average and center of gravity
methods; further, it exhibits higher similarity with the original
energy spectrum signal. Compared with hard threshold denoising
method, the improved threshold denoising method avoids the
pseudo Gibbs phenomenon and improves the smoothness of the
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denoised line; compared with the soft threshold denoising method,
it avoids the constant deviation of the data after denoised, thus,
improving the SNR and reducing the RMSE.

5. Conclusions

In this study, an improved threshold calculation method and
threshold processing function are analyzed to denoise the gamma
energy spectrum. Through theoretical research and experimental
analyses, the following conclusions can be drawn:

1) Compared with the traditional arithmetic average and center of
gravity methods, the improved threshold denoising method
exhibits a smaller RMSE and higher SNR, which retains the
advantage of wavelet threshold denoising;

2) The improved threshold calculation method considers the in-
fluence of the number of decomposition layers; hence, the
calculated threshold is more accurate and useful signals are not
lost during denoising;

3) The improved threshold processing function avoids the pseudo-
Gibbs phenomenon in the hard threshold method. Compared
with the traditional soft threshold method, the improved
threshold processing function further reduces the RMSE, im-
proves the SNR. It also avoids the constant deviation, so the
characteristic signals are preserved well.
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