• Title/Summary/Keyword: Wavefront sensor

Search Result 47, Processing Time 0.02 seconds

Statistical Analysis of Ranging Errors by using $\beta$-Density Angular Errors due to Heading Uncertainty ($\beta$ - 분포를 갖는 센서의 방향각 오차로 인한 거리 오차의 통계적 분석)

  • 김종성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.100-106
    • /
    • 1984
  • Traditional methods for estimating the location of underwater target, i.e. the triangulation method and the wavefront curvature method, have been utilized. The location of a target is defined by the range and the bearing, which estimates can be obtained by evaluating the time delay between neighboring sensors. Many components of error occur in estimating the target range, among which the error due to the fluctuation of heading angle is outstanding. In this paper, the wavefront curvature method was used. We considered the error due to the heading fluctuation as the $\beta$-density process, from which we analized the range estimates with $\beta$-density function exist in some finite limits, and its mean value and variation are depicted as a function of true range and heading fluctuation. Given heading angles and sensor separation, maximum estimated heading errors are presented as a function of true range.

  • PDF

Algorithms for wavefront reconstruction of Shack-Hartmann wavefront sensor (Shack-Hartmann 센서의 파면 재구성 알고리즘)

  • 서영석;백성훈;박승규;김철중
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.44-45
    • /
    • 2000
  • Shack-Hartmann 센서로부터 얻어진 기울기 정보로부터 파면을 재구성하고 분석하기 위해서는 각각의 점 영상에 대한 위상 구배로부터 파면의 위상을 재구성할 수 있는 수학적인 알고리즘이 필요하다. 파면의 위상을 재구성하기 위한 알고리즘은 Hudgin, Fried, Southwell이 제시한 세 가지 방법에 대한 연구결과가 가장 많이 알려져 있다. 본 연구에서는 CCD 카메라로부터 전송된 디지털 영상에서 각각의 점 영상의 중심점을 추출하여 점 영상의 이동정보로부터 수평과 수직방향의 기울기를 계산하고, 이를 바탕으로 최소제곱법(least-square fitting)을 사용하여 위상을 재구성하였다. 파면의 기울기 정보로부터 파면을 재구성하기 위해 기존의 이론을 바탕으로 행렬계산법을 사용하여 각각의 경우를 일반화하였고, 위상의 복구와 파면의 보정에 따른 해석적인 오차의 관계를 논의하였다. (중략)

  • PDF

A Study on a Fast and High Precision Measuring Algorithm of Wavefront Using the Shack-Hartman Sensor (하트만 센서를 이용한 정밀 고속 파면측정 알고리즘에 관한 연구)

  • 박승규;백성훈;서영석;김철중;박준식;나성웅
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.28-29
    • /
    • 2002
  • 하트만 센서를 이용한 파면 왜곡 측정에서 측정 정밀도와 측정 속도는 왜곡을 실시간으로 보정하고자 하는 적응광학 기술에서 중요한 요소이다. 파면왜곡을 측정하고 보정하는 실제 환경에서 적응광학장치는 전기적으로 안정된 시스템의 구성이 요구된다. 본 논문에서는 하트만 센서를 이용한 파면 측정과정에서 넓은 측정 범위를 가지면서도 고속 정밀한 파면 정보를 추출할 수 있는 알고리즘을 연구하였고 적응광학 부품들을 제어함에 있어 전기적으로 안정된 하드웨어 장치들을 구성하였다. (중략)

  • PDF

Measurement of Wavefront Aberrations in Off-Axis Parabolic Mirrors and its Dependence on the Misalignment (레이저 빔의 파면 측정을 통한 비축 포물 거울의 성능 평가 및 정렬 오차 민감도에 관한 연구)

  • Jeong, Tae-Moon;Choi, Il-Woo;Ko, Do-Kyeong;Lee, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.256-261
    • /
    • 2006
  • Wavefront aberrations of a laser beam that was reflected from an off-axis parabolic (OAP) mirror were measured to evaluate the optical performance of the OAP mirror. For a diamond turned OAP mirror, the root-mean-square (rms) value of higher-order aberrations was only $0.03{\mu}m$ for the laser beam size of about 34 mm. The other OAP mirror which was polished at a domestic company had the rms value of higher-order aberrations of $2.07{\mu}m$ for the same beam size. Although the diamond turned OAP mirror was well fabricated to have a small amount of aberrations, the aberrations were induced by the misalignment of the OAP mirror. Especially, 0 degree astigmatism increased with the sensitivity of $0.372{\mu}m/mrad$ when the OAP mirror was tilted in the tangential plane, which agreed well with the calculated results using a commercial ray tracing software.

Detection Algorithm of Lenslet Array Spot Pattern for Acquisition of Laser Wavefront (레이저 파면 획득용 Lenslet Array 점 패턴 검출 알고리즘)

  • Lee, Jae-Il;Lee, Young-Cheol;Huh, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.110-119
    • /
    • 2005
  • In this paper, a new detection algorithm was proposed for finding the position of lenslet array spot pattern used to acquire laser wavefront. Based on the analysis of the required signal processing characteristics, we categorized into and designed four main signal processing functions. The proposed was designed in order to have robust feature against a variation of geometrical form of the spot and also implemented to have semi-automatic thresholding capability based on CCD noise analysis. For performance evaluation, we made qualitative and quantitative comparisons with Carvalho's algorithm which has been published in recent. In the given experimental spot images, the proposed could detect the spots which has 1/3 times lower than the least S/N of which Carvalho's can detect and could reach to a detection precision of 0.1 pixel at the S/N. In functional aspect, the proposed could separate all valid spots locally. From these results, the proposed could have a superior precision of location detection of spot pattern in wider S/N range.

Performance Prediction of a Laser-guide Star Adaptive Optics System for a 1.6 m Telescope

  • Lee, Jun Ho;Lee, Sang Eun;Kong, Young Jun
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.269-279
    • /
    • 2018
  • We are currently investigating the feasibility of a 1.6 m telescope with a laser-guide star adaptive optics (AO) system. The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a focal length of 21.7 m. This paper first reviews atmospheric seeing conditions measured over a year in 2014~2015 at the Bohyun Observatory, South Korea, which corresponds to an area from 11.6 to 21.6 cm within 95% probability with regard to the Fried parameter of 880 nm at a telescope pupil plane. We then derive principal seeing conditions such as the Fried parameter and Greenwood frequency for eight astronomical spectral bands (V/R/I/J/H/K/L/M centered at 0.55, 0.64, 0.79, 1.22, 1.65, 2.20, 3.55, and $4.77{\mu}m$). Then we propose an AO system with a laser guide star for the 1.6 m telescope based on the seeing conditions. The proposed AO system consists of a fast tip/tilt secondary mirror, a $17{\times}17$ deformable mirror, a $16{\times}16$ Shack-Hartmann sensor, and a sodium laser guide star (589.2 nm). The high order AO system is close-looped with 2 KHz sampling frequency while the tip/tilt mirror is independently close-looped with 63 Hz sampling frequency. The AO system has three operational concepts: 1) bright target observation with its own wavefront sensing, 2) less bright star observation with wavefront sensing from another bright natural guide star (NGS), and 3) faint target observation with tip/tilt sensing from a bright natural guide star and wavefront sensing from a laser guide star. We name these three concepts 'None', 'NGS only', and 'LGS + NGS', respectively. Following a thorough investigation into the error sources of the AO system, we predict the root mean square (RMS) wavefront error of the system and its corresponding Strehl ratio over nine analysis cases over the worst ($2{\sigma}$) seeing conditions. From the analysis, we expect Strehl ratio >0.3 in most seeing conditions with guide stars.

Design of a Simply Structured High-efficiency Polarization-independent Multilayer Dielectric Grating for Spectral Beam Combining (SBC 시스템 구성을 위한 단순한 구조를 가지는 고효율 무편광 유전체 다층박막 회절격자 설계)

  • Cho, Hyun-Ju;Kim, Gwan-Ha;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Sang-In;Cho, Joonyoung;Kim, Hyun Tae;Kwak, Young-seop
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • We design a polarization-independent dielectric multilayer thin-film diffraction grating for a spectral-beam-combining (SBC) system with a simple grating structure and low aspect ratio. To maintain the high quality of the SBC beam, we propose a multilayer mirror structure in which the wavefront distortion due to stress accumulation is minimized. Moreover, to prevent light absorption from contamination, an optimized design to minimize the grating thickness was performed. The optimally designed diffraction grating has 99.36% diffraction efficiency for -1st-order polarization-independent light, for incidence at the Littrow angle and 1055-nm wavelength. It is confirmed that the designed diffraction grating has sufficient process margin to secure a polarization-independent diffraction efficiency of 96% or greater.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

Skeleton-Based Local-Path Planning for a Mobile Robot with a Vision System (비전센서를 사용하는 이동로봇의 골격지도를 이용한 지역경로계획 알고리즘)

  • Kwon, Ji-Wook;Yang, Dong-Hoon;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1958-1959
    • /
    • 2006
  • This paper proposes a local path-planning algorithm that enables a mobile robot with vision sensor in a local area.The proposed method based on projective geometry and a wavefront method finds local-paths to avoid collisions using 3-D walls or obstacles map generated using projective geometry. Simulation results show the feasibility of the proposed method

  • PDF