Browse > Article
http://dx.doi.org/10.3807/KJOP.2020.31.4.169

Design of a Simply Structured High-efficiency Polarization-independent Multilayer Dielectric Grating for Spectral Beam Combining  

Cho, Hyun-Ju (Department of Firearms & Optics, Daeduk University)
Kim, Gwan-Ha (Department of Semiconductor & Automation, Daeduk University)
Kim, Dong Hwan (Laser & Sensor Systems, Hanwha Corporation)
Lee, Yong-Soo (Laser & Sensor Systems, Hanwha Corporation)
Kim, Sang-In (Laser & Sensor Systems, Hanwha Corporation)
Cho, Joonyoung (Laser & Sensor Systems, Hanwha Corporation)
Kim, Hyun Tae (Laser & Sensor Systems, Hanwha Corporation)
Kwak, Young-seop (YS Optics)
Publication Information
Korean Journal of Optics and Photonics / v.31, no.4, 2020 , pp. 169-175 More about this Journal
Abstract
We design a polarization-independent dielectric multilayer thin-film diffraction grating for a spectral-beam-combining (SBC) system with a simple grating structure and low aspect ratio. To maintain the high quality of the SBC beam, we propose a multilayer mirror structure in which the wavefront distortion due to stress accumulation is minimized. Moreover, to prevent light absorption from contamination, an optimized design to minimize the grating thickness was performed. The optimally designed diffraction grating has 99.36% diffraction efficiency for -1st-order polarization-independent light, for incidence at the Littrow angle and 1055-nm wavelength. It is confirmed that the designed diffraction grating has sufficient process margin to secure a polarization-independent diffraction efficiency of 96% or greater.
Keywords
Diffraction grating; Polarization independent; Dielectric multilayer mirror; Reflection grating; Spectral beam combining;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005).   DOI
2 C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Bruckner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tunnermann, M. Gowin, E. tan Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009).   DOI
3 T. H. Loftus, A. M. Thomas, P. R. Hofman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beam-combined fiber lasers for high-average-power applications," IEEE J. Quantum Electron. 13, 487-497 (2007).   DOI
4 M. Jeon, Y. Jung, J. Park, H. Jeong, J. W. Kim, and H. Seo, "High-power quasi-continuous wave operation of incoherently combined Yb-doped fiber lasers," Curr. Opt. Photon. 1, 525-528 (2017).   DOI
5 M. Strecker, M. Plotner, F. Stutzki, T. Walbaum, S. Ehrhardt, T. Benkenstein, U. Zeitner, T. Schreiber, R. Eberhardt, A. Tunnermann, U. Stuhr, M. Jung, and K. Ludewigt, "Highly efficient dual-grating 3-channel spectral beam combining of narrow-linewidth monolithic cw Yb-doped fiber amplifiers up to 5.5 kW," Proc. SPIE 10897, 108970E (2019).
6 Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhao, "10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016).   DOI
7 L. Li, Q. Liu, J. Chena, L. Wang, Y. Jin, Y. Yang, and J. Shao, "Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system," Opt. Commun. 385, 97-103 (2017).   DOI
8 J. Chen, Y. Zhang, Y. Wang, F. Kong, H. Huang, Y. Wang, Y. Jin, P. Chen, J. Xu, and J. Shao, "Polarization-independent broadband beam combining gratings with over 98% measured diffraction efficiency from 1023 to 1080 nm," Opt. Lett. 42, 4016-4019 (2017).   DOI
9 J. Chen, Y. Jin, and J. Shao, "Design of broadband polarization-independent multilayer dielectric grating," Proc. SPIE 10339, 1033911 (2017).
10 H. Cao, J. Wu, J. Yu, and J. Ma, "High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating," Appl. Opt. 57, 900-904 (2018).   DOI
11 X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, J. Lu, X. Wang, and Z. Wang, "Laser damage study of nodules in electron-beam-evaporated $HfO_2/SiO_2$ high reflectors," Appl. Opt. 50, C357-C363 (2011).   DOI
12 L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, "Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range," Appl. Opt. 50, C178-C187 (2011).   DOI
13 J.-Y. Natoil, L. Gallais, H. Akhiuayri, and C. Amra, "Laser-induced damage of materials in bulk, thin-film, and liquid forms," Appl. Opt. 41, 3156-3166 (2002).   DOI
14 M. Sugiura, K. Tamura, and M. Kobiyama, "Quantitative calculation of substrate bending caused by multilayer coating stresses," Appl. Opt. 59, A92-A98 (2020).   DOI
15 H.-J. Cho, Practical Optical Thin Films (Books-Hill, Seoul, Korea. 2015), pp. 278-280.
16 J. E. Harvey and C. L. Vernold, "Description of diffraction grating behavior in direct cosine space," Appl. Opt. 37, 8158-8159 (1998).   DOI
17 J. E. Harvey and R. N. Pfisterer, "Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings," Opt. Eng. 58, 087105 (2019).
18 K. Johnson, Diffraction optics simulation and design from KJ Innovation (KJ Innovation) www.kjinnovation.com (Accessed date: 2020. 05. 22).
19 N. Bonod and J. Neauport, "Diffraction gratings: from principles to applications in high intensity lasers," Adv. Opt. Photonics 8, 156-199 (2016).   DOI
20 H.-J. Cho, K.-H. Lee, S.-I. Kim, J.-H. Lee, H.-T. Kim, W.-S. Kim, D. H. Kim, Y.-S. Lee, S. Kim, T. Y. Kim, and C. K. Hwangbo, "Analysis on design and fabrication of high-diffraction-efficiency multilayer dielectric gratings," Curr. Opt. Photon. 2, 125-133 (2018).   DOI