• Title/Summary/Keyword: Waveform model

Search Result 279, Processing Time 0.02 seconds

The Effects of Wall Elasticity on Wall Shear Rate of a Divergent Tube (Vascular Graft) (벽 탄성도가 확장관(인조혈관) 벽 전단변형률에 미치는 영향)

  • Rhee, Kye-Han;Lee, Sang-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.912-921
    • /
    • 1999
  • Shear stress acting on the arterial wall by blood flow is an important hemodynamic factor influencing blocking of blood vessel by thickening of an arterial wall. In order to study the effects of wall elasticity on the wall shear rate distribution in an artery-divergent graft anastomosis, a rigid and a elastic model are manufactured. These models are placed in a pulsatile flow loop, which can generate the desired flow waveform. Flow visualization method using a photochromic dye is used to measure the wall shear rate distribution. The accuracy of measuring technique is verified by comparing the measured wall shear rate in the straight portion of a model with the theoretical solution. Measured wall shear rates depend on the wall elasticity and flow waveform. The mean and maximum shear rate in the elastic model are lower than those in rigid model, and the decreases are more significant near the end of a divergent tube. The reduction of mean and maximum of wall shear rate in an elastic model are up to 17 percent.

Blood Pressure Simulation using an Arterial Pressure-volume Model

  • Yoon, Sang-Hwa;Kim, Jae-Hyung;Ye, Soo-Young;Kim, Cheol-Han;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • Using an arterial pressure-volume (APV) model, we performed an analysis of the conventional blood pressure estimation method using an oscillometric sphygmomanometer with computer simulation. Traditionally, the maximum amplitude algorithm (MAA) has been applied to the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected by the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPF) circuitry. Experimental errors result from these effects when estimating blood pressure. To determine an algorithm independent of the influence of waveform shapes and parameters of HPF, the volume oscillation of the APV model and the phase shift of the oscillation with fast Fourier transform (FFT) were tested while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg/s). The phase shift between ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were obtained from simulations performed on two different arterial blood pressure waveforms and one hyperthermia waveform.

Wavelet-based Pitch Detector for 2.4 kbps Harmonic-CELP Coder (2.4 kbps 하모닉-CELP 코더를 위한 웨이블렛 피치 검출기)

  • 방상운;이인성;권오주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.717-726
    • /
    • 2003
  • This paper presents the methods that design the Wavelet-based pitch detector for 2,4 kbps Harmonic-CELP Coder, and that achieve the effective waveform interpolation by decision window shape of the transition region, Waveform interpolation coder operates by encoding one pitch-period-sized segment, a prototype segment, of speech for each frame, generate the smooth waveform interpolation between the prototype segments for voiced frame, But, harmonic synthesis of the prototype waveforms between previous frame and current frame occur not only waveform errors but also discontinuity at frame boundary on that case of pitch halving or doubling, In addtion, in transition region since waveform interpolation coder synthesizes the excitation waveform by using overlap-add with triangularity window, therefore, Harmonic-CELP fail to model the instantaneous increasing speech and synthesis waveform linearly increases, First of all, in order to detect the precise pitch period, we use the hybrid 1st pitch detector, and increse the precision by using 2nd ACF-pitch detector, Next, in order to modify excitation window, we detect the onset, offset of frame by GCI, As the result, pitch doubling is removed and pitch error rate is decreased 5.4% in comparison with ACF, and is decreased 2,66% in comparison with wavelet detector, MOS test improve 0.13 at transition region.

An Intelligent Iris Recognition System (지능형 홍채 인식 시스템)

  • Kim, Jae-Min;Cho, Seong-Won;Kim, Soo-Lin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.468-472
    • /
    • 2004
  • This paper presents an intelligent iris recognition system which consists of quality check, iris localization, feature extraction, and verification. For the quality check, the local statistics on the pupil boundary is used. Gaussian mixture model is used to segment and localized the iris region. The feature extraction method is based on an optimal waveform simplification. For the verification, we use an intelligent variable threshold.

ANALYSIS OF THE MUTUAL SELF-BIASED SHIELDED MAGNETO-RESISTIVE HEAD WITH TRANSMISSION-LINE MODEL(II)

  • Zhang, H.W.;Kim, H.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.299-303
    • /
    • 1995
  • In order to improve the read-out signal waveform, a shielded magnetoresistive (SMR) head has been designed and studied by applying the transmission-line model. The bias and signal field distribution, the voltage output, the harmonic output signal and resistance value of MR element are simulated as functions of bias current and recording displacement. The results show that the SMR head has good linear character with respect to the medium recording signal in high recording frequency of about 2.5 MHz. The amplitude and waveform of reroduction signal have been obviously improved. The saturation effect on the symmetry and amplitude of reproducing output have also been analyzed.

  • PDF

A New Symmetric Multilevel Inverter Topology Using Single and Double Source Sub-Multilevel Inverters

  • Ramani, Kannan;Sathik, Mohd. Ali Jagabar;Sivakumar, Selvam
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.96-105
    • /
    • 2015
  • In recent years, the multilevel converters have been given more attention due to their modularity, reliability, failure management and multi stepped output waveform with less total harmonic distortion. This paper presents a novel symmetric multilevel inverter topology with reduced switching components to generate a high quality stepped sinusoidal voltage waveform. The series and parallel combinations of switches in the proposed topology reduce the total number of conducting switches in each level of output voltages. In addition, a comparison between the proposed topology with another topology from the literature is presented. To verify the proposed topology, the computer based simulation model is developed using MATLAB/Simulink and experimentally with a prototype model results are then compared.

CMOS Inverter Delay Model Using the Triangle-shaped Waveform of Output Current (삼각형 모양의 출력 전류 모형을 이용한 CMOS 인버터 지연 모사)

  • Choi, Deuk-Sung
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we develop an analytical expression for the propagation delay of submicrometer CMOS inverter using the triangle-shaped waveform of output current and two fitting parameters. Our model shows that simulation results are well in accordance with HSPICE results. Maximum simulation errors of total inverter delay and jitter are below 0.6% and 2.8%, respectively. Comparing with previous researches, the new model has better fittering characteristics in the range of low operating voltage. We also have fabricated the inverters with ten chains and estimated inverter delay and jitter characteristics. The results show that the values of delay and jitter in the fabricated samples come close to the values of those in the new model.

Anti-inflammatory Effect of Arbitrary Waveform Generator Treatment in Rats

  • Kim, Myung-Gyou;Lee, Se-Na;Seo, Il-Bok;Leem, Kang-Hyun;Ham, Kee-Sun;Kim, Hye-Kyung
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • Inflammation is the complex biological response of injured tissues to harmful stimuli. A cascade of biochemical events propagates and matures the inflammatory response, involving the local vascular system, the immune system, and various cells within the injured tissue. The immune system is often involved with inflammatory disorders, demonstrated in both allergic reactions and some myopathies, with many immune system disorders resulting in abnormal inflammation. An Arbitrary Waveform Generator (AWG) is a piece of electronic test equipment used to generate electrical waveforms for the treatment of patients. The patients with gastritis and arthritis have been known to have a relatively favorable prognosis with AWG treatment. Accordingly, we examined the effects of AWG treatment in gastritis and arthritis animal model. The compound 48/80 was used to induce animal gastritis model. The tissue malone dialdehyde (MDA) and serum histamine levels, and the activity of superoxide dismutase (SOD) in stomach tissue were measured. The tissue MDA and serum histamine levels in AWG treated groups exhibited the decreased tendency compared with control group, whereas the tissue SOD activity was slightly increased. The Freund's complete adjuvant was used to induce animal arthritis model as well. The paw edema volume and the width of ankle joint were determined. The AWG treatment significantly decreased the paw edema volume after 5th day of treatment. Although further studies should be performed to confirm the effects of AWG treatment, present study suggest that AWG treatment might be used as a complementary treatment for the gastritis or arthritis treatment.

  • PDF

A Study on the Underwater Target Detection Using the Waveform Inversion Technique (파형역산 기법을 이용한 수중표적 탐지 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Kim, Woo Shik;Choi, Sang Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.487-492
    • /
    • 2015
  • A short-range underwater target detection and identification techniques using mid- and high-frequency bands have been highly developed. However, nowadays the long-range detection using the low-frequency band is requested and one of the most challengeable issues. The waveform inversion technique is widely used and the hottest technology in both academia and industry of the seismic exploration. It is based on the numerical analysis tool, and could construct more than a few kilometers of the subsurface structures and model-parameters such as P-wave velocity using a low-frequency band. By applying this technique to the underwater acoustic circumstance, firstly application of underwater target detection is verified. Furthermore, subsurface structures and it's parameters of the war-field are well reconstructed. We can confirm that this technique greatly reduces the false-alarm rate for the underwater targets because it could accurately reproduce both the shape and the model-parameters at the same time.