Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.1.96

A New Symmetric Multilevel Inverter Topology Using Single and Double Source Sub-Multilevel Inverters  

Ramani, Kannan (Dept. of Electrical and Electronics Engg., K. S. Rangasamy College of Technology)
Sathik, Mohd. Ali Jagabar (Dept. of Electrical and Electronics Engg., J. J. College of Engineering and Technology)
Sivakumar, Selvam (Dept. of Electrical and Electronics Engg., J. J. College of Engineering and Technology)
Publication Information
Journal of Power Electronics / v.15, no.1, 2015 , pp. 96-105 More about this Journal
Abstract
In recent years, the multilevel converters have been given more attention due to their modularity, reliability, failure management and multi stepped output waveform with less total harmonic distortion. This paper presents a novel symmetric multilevel inverter topology with reduced switching components to generate a high quality stepped sinusoidal voltage waveform. The series and parallel combinations of switches in the proposed topology reduce the total number of conducting switches in each level of output voltages. In addition, a comparison between the proposed topology with another topology from the literature is presented. To verify the proposed topology, the computer based simulation model is developed using MATLAB/Simulink and experimentally with a prototype model results are then compared.
Keywords
DC-AC power conversion; Multi-level power converters; Power semiconductor devices; Renewable energy; Total Harmonic Distortion (THD);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. Blaabjerg, "Power electronics-key technology for renewable energy systems." in Proc. 2nd IEEE Power Electron. Drive Systems and Technologies Conf. (PEDSTC), pp. 445-466, 2011.
2 S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, "Recent advances and industrial applications of multilevel converters." IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2553-2580, Aug. 2010.   DOI   ScienceOn
3 B. Mirafzal, "Survey of Fault-Tolerance Techniques for Three-Phase Voltage Source Inverters," IEEE Trans. Ind. Electron, Vol. 61, No. 10, pp. 5192-5202, Oct. 2014.   DOI   ScienceOn
4 J. Rodriguez, J. S. Lai, and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind. Electron, Vol. 49, No. 4, pp. 724-738, Aug. 2002.   DOI   ScienceOn
5 S. Ramkumar, V. Kamarajb, S. Thamizharasana, and S. Jeevananthanc, "A new series parallel switched multilevel dc-link inverter topology," International Journal of Electrical Power & Energy Systems, Vol. 36, No. 1, pp. 93-99, Mar. 2012.   DOI   ScienceOn
6 M. F. Kangarlu and E. Babaei, "A generalized cascaded multilevel inverter using series connection of submultilevel inverters," IEEE Trans. Power Electron, Vol. 28, No. 2, pp. 625-636, Feb. 2013.   DOI   ScienceOn
7 G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I. Gimenez, "A new simplified multilevel inverter topology for DC&AC conversion," IEEE Trans. Power Electron, Vol. 21, No. 5, pp. 1311-1319, Sep. 2006.   DOI   ScienceOn
8 G. Waltrich and I. Barbi, "Three-phase cascaded multilevel inverter using power cells with two inverter legs in series," IEEE Trans. Ind. Electron, Vol. 57, No. 8, pp. 2605-2612, Aug. 2010.   DOI   ScienceOn
9 R. S. Alishah, D. Nazarpour, S. H. Hosseini, and M. Sabahi, "Novel topologies for symmetric, asymmetric, and cascade switched-diode multilevel converter with minimum number of power electronic components," IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5300-5310, Oct. 2014.   DOI   ScienceOn
10 Y. Ye, K. W. E. Cheng, J. Liu, and K. Ding, "A step-up switched-capacitor multilevel inverter with self voltage balancing," IEEE Trans. Ind. Electron, Vol. 61, No. 12, pp. 6672-6680, Dec. 2014.   DOI   ScienceOn
11 Y. Hinago and H. Koizumi, "A switched-capacitor inverter using series/parallel conversion with inductive load," IEEE Trans. Ind. Electron, Vol. 59, No. 2, pp.878-887, Feb. 2012.   DOI
12 A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, "A hybrid cascade converter topology with series-connected symmetrical and asymmetrical diode clamped H-bridge cells," IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 51-65, Jan. 2011.   DOI   ScienceOn
13 N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, 2nd Ed., New York: John Wiley & Sons, pp. 524-543, 1995.
14 A. Mokhberdoran and A. Ajami, "Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology," IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6712-6724, Dec.2014.   DOI   ScienceOn
15 R. Nagarajan and M. Saravanan, "Performance analysis of a novel reduced switch cascaded multilevel inverter," Journal of Power Electronics, Vol. 14, No. 1, pp. 48-60, Jan. 2014.   DOI   ScienceOn
16 P. Lezana and G. Ortiz, "Extended operation of cascade multicell converters under fault condition," IEEE Trans. Ind. Electron, Vol. 56, No. 7, pp. 2697-2703, Jul. 2009.   DOI   ScienceOn
17 H. M. Pang and P. M. H. Bryan, "A life prediction scheme for electrolytic capacitors in power converters without current sensor," in Proc.25th IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 973-979, 2010.
18 M. Perez, J. Rodriguez, J. Pontt, and S. Kouro, "Power distribution in hybrid multi-cell converter with nearest level modulation," in Proc. ISIE IEEE International Symposium on Ind. Elelctron, pp. 736-741, 2007.
19 P. Hu and D. Jiang, "A level-increased nearest level modulation method for modular multilevel converters," IEEE Trans. Power Electron., to be published.