CMOS Inverter Delay Model Using the Triangle-shaped Waveform of Output Current

삼각형 모양의 출력 전류 모형을 이용한 CMOS 인버터 지연 모사

  • 최득성 (영남이공대학 전자정보계열)
  • Received : 2011.08.12
  • Accepted : 2011.09.06
  • Published : 2011.09.25

Abstract

In this paper, we develop an analytical expression for the propagation delay of submicrometer CMOS inverter using the triangle-shaped waveform of output current and two fitting parameters. Our model shows that simulation results are well in accordance with HSPICE results. Maximum simulation errors of total inverter delay and jitter are below 0.6% and 2.8%, respectively. Comparing with previous researches, the new model has better fittering characteristics in the range of low operating voltage. We also have fabricated the inverters with ten chains and estimated inverter delay and jitter characteristics. The results show that the values of delay and jitter in the fabricated samples come close to the values of those in the new model.

본 연구는 submicrometer CMOS 인버터의 신호 전달 지연에 대한 모사로서 출력 전류 파형을 삼각형 모양으로 근사하고 두 개의 실험적 변수를 사용하여 구현 하였다. 본 모사의 결과는 HSPICE 결과와 매우 부합된 결과를 보인다. 모델의 시뮬레이션 결과 인버터 지연 값과 jitter의 최대 오류치는 각각 0.6%와 2.8% 이하의 결과를 보인다. 앞선 연구자들의 결과와 비교해 볼 때 본 연구의 모사는 작은 동작 전압에서 더 나은 결과를 보이는 특성을 가지고 있다. 이러한 모사의 결과를 실험적으로 증명하기 위해 인버터 체인을 제작 하였고 인버터 지연과 jitter 특성을 평가하였다. 제작된 시료의 결과는 새로운 모델과 매우 근사한 값을 보인다.

Keywords

References

  1. K. O. Jeppson, "Modeling the influence of the transistor gain ratio and the input-to-output coupling capacitance of the CMOS inverter delay," IEEE J. Solid-State Circuits, vol. 29, pp. 646-654, June 1994. https://doi.org/10.1109/4.293109
  2. P. Cocchini, G. Piccinini, and M. Zamboni, "A comprehensive submicrometer MOST delay model and its application to CMOS buffers," IEEE J. Solid-State Circuits, vol. 32, pp. 1254-1262, Aug. 1997. https://doi.org/10.1109/4.604081
  3. L. Bisdounis et al., "Propagation delay and short-circuit power dissipation modeling of the CMOS inverter," IEEE Trans. Circuits Syst. I, vol. 45, pp. 259-270, Mar. 1998. https://doi.org/10.1109/81.662699
  4. J. M. Daga and D. Auvergne, "A comprehensive delay macro modeling for submicrometer CMOS logics," IEEE J. Solid-State Circuits, vol. 34, pp. 42-55, Jan. 1999. https://doi.org/10.1109/4.736655
  5. A. Hirata, H. Onodera, and K. Tamaru, "Estimation of propagation delay considering short-circuit current for static CMOS gates," IEEE Trans. Circuits Syst. I, vol. 45, pp. 1194-1198, Nov. 1998. https://doi.org/10.1109/81.735442
  6. L. Bisdounis, S. Nikolaidis, and O. Koufopavlou, "Analytical transient response and propagation delay evaluation of the CMOS inverter for short-channel devices," IEEE J. Solid-State Circuits, vol. 33, pp. 302-306, Feb. 1998. https://doi.org/10.1109/4.658636
  7. A. Kabbani, D. Alkhalili, and A. J. al-Khalili, "Technology portable analytical model for DSM CMOS inverter transition time estimation," IEEE Trans. Computer-Aided Design, vol. 22, pp. 1177-1187, Sept. 2003. https://doi.org/10.1109/TCAD.2003.816215
  8. M.H. Na, E.J. Nowak, W. Haensch and J. Cai, "The effective drive current in CMOS inverters," Electron Devices Meeting, 2002. IEDM '02. Digest, pp. 121 - 124.
  9. T. Sakurai, D.R. Newton, "Alpha-power law MOSFET model and its application to CMOS inverter delay and other formulas," IEEE J. Solid-State Circuits, vol. 25, pp. 584-594, Apr. 1990. https://doi.org/10.1109/4.52187
  10. Y. S. Kim, K. Y. Lim, M. G. Sung, et al, "Low Resistive Tungsten Dual Polymetal gate Process for High Speed and High Density Memory Device," Solid State Device Research Conference, ESSDERC 2007, pp. 259-262, Sept., 2007.