• Title/Summary/Keyword: Wave Transformation

Search Result 348, Processing Time 0.021 seconds

NUMERICAL SIMULATION OF TWO-DIMENSIONAL FREE-SURFACE FLOW AND WAVE TRANSFORMATION OVER CONSTANT-SLOPE BOTTOM TOPOGRAPHY

  • DIMAKOPOULOS AGGELOS S;DIMAS ATHANASSIOS A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.842-845
    • /
    • 2005
  • A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.

  • PDF

Numerical Model Experiments of Wave Transformation for the Marine Structure Design (해양구조물 설계를 위한 파랑변형 수치모형실험)

  • Jang, Ho-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.440-447
    • /
    • 2012
  • Numerical model experiments of wave transformation due to the reclamation and the construction of breakwater in case of 50 years design wave were performed using time dependent mild slope equation included shoaling, refraction, diffraction, reflection and wave breaking. As waves propagate to the shore, wave height gradually diminishes by the bottom friction and wave breaking etc.. After the reclamation and the construction of 75 m length breakwater, wave height distributions in the lee of breakwater have the range of 29~128 cm. To make better the harbor tranquility the length of breakwater needs to extend more than 100 m. After the construction of breakwater, wave height in the lee of the structure was deduced over 80%.

Numerical Analysis of Three-Dimensional Wave Transformation of Floating Breakwater Moored by Catenary (Catenary 계류된 부방파제의 3차원 파랑변형에 관한 수치해석)

  • KIM DO-SAM;CHOI NACK-HOON;YOON HEE-MYUN;SON BYOUNG-KYU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.241-248
    • /
    • 2004
  • In general, the salient features if the floating breakwater have excellent regulation of sea-water keeping the marine a1ways clean, up and dorm free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth, This study discusses the three dimensional wave transformation of the floating breakwater moored by catenary. Numerical method is based at the Green function method and eigenfunction expansion method. The validity of the present is confirmed by comparing it with the result of Ijima et a1.(1975) fer tensile maxed floating breakwater. According to the numerical results, drift and width of the floating breakwater affect at the wave transformation greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater.

  • PDF

Analysis of Wave Forces Acting on Vertical Cylinder and Wave Transformations by S-Dimensional VOF Method (3차원 VOF법에 의한 주상구조물에 작용하는 파력과 파랑변형 해석)

  • Lee, Sang-Ki;Kim, Chang-Hoon;Kim, Do-Sam;Sin, Dong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • Recently, as economy grow and population increase we need to develop our coastal area and make good use of it for various purposes. That's why large structures are being installed on the sea. Some samples are petroleum storage tanks, pier of sea bridges. These are large structures which have been installed at coastal area. When we design such vertical cylinder, we should avoid too much construction expense caused by excessive designing or by lack of sufficient design. In order to prevent excessive expenditure, it is important to correctly calculate the force of waves acting on structures and predict the wave transformation. In this study, apply to VOF method based on Navier-Stokes equation and then discussed that nonlinear wave force and wave transformation. A comparison between the numerical model and existing experimental results showed nice agreement among them.

  • PDF

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 1. Derivation of Equations of Wave Energy (선형파 이론에 의한 파랑변형 예측 시 소멸파 성분의 중요성 검토: 1. 에너지 식 유도)

  • 이창훈;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.282-285
    • /
    • 2002
  • The magnitude of evanescent modes in terms of dynamics is investigated in case that the transformation of water waves is predicted using the linear wave theory. In other words, derivation is made of both the kinetic and potential wave energies of evanescent modes as welt as propagating modes. The evanescent modes consist of compound components of propagating and evanescent modes, those of identically equal evanescent modes, and those of identically different evanescent modes. The wave energy per a horizontal distance decreases exponentially with the distance.

Effects of Wave Dissipation with Circular Cylinders (원형파일군에 의한 파랑제어 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • One of the central problems in astudy of the coastal surface wave environment is predicting the transformation of waves as they propagate toward the shore. The transformation is mainly due to the existence of obstacles, such as breakwaters and vertical cylinders. In general, the types of wave transformation can be classified as follows: wave diffraction, reflection, transmission, scattering, radiation, et al. This research dealtwith wave transmission and dissipation problems for two dimensional irregular waves and vertical circular cylinders. Using the unsteady mild slope equation, a numerical model was developed to calculate the reflection and transmission of regular waves from a multiple-row circular breakwater and vertical cylinders. In addition, hydraulic model experiments were conducted with different values for the properties between tire piles and the opening ratio (distances) between the rows of the breakwater. It was found that the transmission coefficients decreased with a decrease in the opening ratio and an increase in the rows of vertical cylinders. A comparison between the results of hydraulic and numerical experiments showed reasonable agreement.

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

Nonlinear Dispersion Model of Sea Waves in the Coastal Zone (연안역에서의 비선형 파낭 분산모형)

  • Pelinovsky, Efim N.;Stepanyants, Yu.;Talipova, Tatiana
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.307-317
    • /
    • 1993
  • The problem of sea wave transformation in the coastal zone taking into account effects of nonlinearity and disperison has been studied. Mathematical model for description of regular wave transformation is based on the method of nonlinear ray theory. The equations for rays and wave field have been produced. Nonlinear wave field is described by the modified Korteweg-de Vries equation. Some analytical solutions of this equation are obtained. Caustic transformation and dissipation effects are included in the mathematical model. Numerical algorithm of solution of the Korteweg-de Vries equation and its stability criterion are described. Results of nonlinear transformation of sea waves in the coastal zone are demonstrated.

  • PDF

An Analysis of Wave Height Distribution in the Vicinity of Samcheon New-Harbor (삼천포 신항의 파고분포 해석)

  • Jang, Dae-Jeong;Ham, Gye-Un
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The calmness inside a harbor plays an important role in the appropriate disposition of harbor structures. However, it is not easy to acquire accurate computational results because these are affected by many factors concerned with wave transformation. Recently, numerical model tests, which are quicker and more economical than hydraulic model experiments, were carried out for the purpose of analyzing wave height distributions in harbors. This paper presents a numerical model that is able to calculate wave heights inside a harbor. It is based on a time-dependent mild slope involving wave refraction, diffraction, shoaling effect, and reflection. In particular, arbitrary reflectivity is used at the boundary in order to simulate the real harbor reflection condition. The proposed numerical model is applied to Samcheon new-harbor in order to investigate harbor calmness.