Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal

수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의

  • Published : 2007.12.31

Abstract

The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

타원형 수중천퇴가 있는 지형을 통과하며 변형하는 파랑을 실험한 Vincent and Briggs(1989)의 불규칙파 실험조건을 수치모의하여 파랑과 흐름의 상호작용 효과를 연구하였다. 수치모의를 위해 SHORECIRC(흐름모형)와 REF/DIF S(파랑모형)를 결합한 모형과 파랑과 흐름을 동시에 계산하는 FUNWAVE를 이용하였다. 이 수치모의로부터 수중 천퇴상에서 발생된 쇄파류는 수중천퇴후면의 파 집중현상을 방해하고, 파랑을 천퇴중심축의 바깥쪽으로 굴절시켜, 파고를 상대적으로 감소시키는 역할을 하는 것을 확인할 수 있었다. 결합모형의 수치모의 결과는 쇄파류의 영향을 고려하지 않는 파랑모형만의 결과보다 실험치와 더 일치하였으며, FUNWAVE를 이용한 수치모의도 실험결과와 잘 일치하였다. 이는 파랑쇄파류의 파랑변형에 미치는 역할의 중요성을 확인시켜주는 것이다.

Keywords

References

  1. 전인식, 김귀동, 김창일, 심재설 (2006). 수중 천퇴에서의 쇄파거동 예측을 위한 Boussinesq 방정식 모델의 적용. 한국해안해양공학회지, 1017-7116, (18)2, 154-165
  2. 최준우, 백운일, 윤성범 (2007). 수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형. 한국해안해양공학회지, 심사중
  3. Borgman, L.E. (1984). Directional spectrum estimation for the Sxy gages. Technical Report. Coastal Engineering Reseach Center, Vicksburg
  4. Bouws, E., Gunther, H., Rosental, W., Vincent, C.L. (1985). Similarity of the wind wave spectrum in finite depth water, Part I-spectral form. Journal of Geophysical Research, 90(C1), pp. 975-986 https://doi.org/10.1029/JC090iC01p00975
  5. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., Thornton, E.B. (2003). Boussinesq modeling of longshore current. Journal of Geophysical Research, 108(C11), 26-1-26-18
  6. Choi, J., Lim, C-H., Jeon, Y-J., Yoon, S.B. (2007). Numerical simulation of irregular wave transformation due to wave induced current. Journal of Hydro-environment Research. accepted
  7. Goda, Y. (2004). A 2-D random wave transformation model with gradational breaker index. Coastal Engineering Journal, 46(1), pp. 1-38 https://doi.org/10.1142/S0578563404000884
  8. Hirakuchi, H., Maruyama, K. (1986). An extension of the parabolic equation for application to obliquely incident waves. Proc. 33rd Japanese Conf. Coastal En., pp. 114-118
  9. Kennedy, A.B., Chen, Q., Kirby, J.T., Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39-47 https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  10. Kirby, J.T., Ozkan, H.T. (1994). Combined refraction/diffraction model for spectral wave conditions, REF/DIF S, version 1.1, User Manual. Technical Report CACR-94-04, University of Delaware
  11. Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., Dalrymple, R.A. (1998). Fully nonlinear Boussinesq wave model, User Manual. Technical Report CACR-98-06, University of Delaware
  12. Nwogu, O. (1993). Alternative form of Boussinesq equation for nearshore wave propagation. J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 119(6), 618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  13. Putrevu, U., Svendsen, I.A. (1999). Three- dimensional dispersion of momentum in wave-induced nearshore currents. European Journal of Mechanics-B/Fluids, 409-427
  14. Suh, K.D. and Dalrymple, R.A. (1993). Application of an angular spectrum model to simulation of irregular wave propagation. J. Waterway, Port, Coastal and Ocean Engrg., 119(5), 505-520 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:5(505)
  15. Svendsen, I.A., Hass, K., Zhao, Q. (2002). Quasi-3D Nearshore Circulation Model SHORECIRC version 2.4, User Manual. Technical Report, University of Delaware
  16. Vincent, C.L., Briggs, M.J. (1989). Refraction- diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), 269-284 https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  17. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1: Highly nonlinear unsteady wave. Journal of Fluid Mechanics, 294, 71-92 https://doi.org/10.1017/S0022112095002813
  18. Yoon, S.B., Cho, Y-S., Lee, C. (2004). Effects of breakinginduced currents on refraction- diffraction of irregular waves over submerged shoal. Ocean Engineering, 31, 633-652 https://doi.org/10.1016/j.oceaneng.2003.07.008