• Title/Summary/Keyword: Wave Absorber

Search Result 253, Processing Time 0.025 seconds

A Study on Numerical Modeling of a Wave Absorber

  • Moon, Won-Min;Kwon, Sun-Hong;Lee, Hee-Sung
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • A new concept wave absorber is proposed. It is a net type wave absorber. Its efficiency was reported in another publication. Since it is based on new concept, the traditional wave absorber theory is not applicable. It is modeled by introducing damping terms in linearized free surface boundary conditions in this study. The length and the thickness of the wave absorber are modeled by the length and the coefficient of the damping terms. Series of experiments are carried out to get the data for the coefficients of the damping term. The boundary element method is adopted to solve the system. The predicted wave heights show excellent agreement with those of experiments when the lengths of the incoming waves are within the length of the wave absorber.

  • PDF

Development of net type wave absorber with air pumping (공기방울 첨가에 의한 부유식 소파장치 개발)

  • Pack, S.W.;Jung, J.H.;Chung, S.H.;Lee, J.H.;Kwon, S.H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.254-256
    • /
    • 2003
  • This paper presents the result if a study m the development of a net type wave absorber with air pumping. The authors already show the usefulness of net type wave absorber in the previous study. However, when it comes to the long waves, it was not easy to maintain the same efficiency with net type wave absorber only. The authors tried to overcome this difficulty by adding air bubbles to the water. The results show that combining the net type wave absorber and the air bubble is more efficient than single adoptation of the wave absorber or a net type wave absorber.

  • PDF

An Experimental Study on Development of the Wave Absorber for Small Wave Flume (소형파수조에 적합한 소파장치 개발에 관한 실험적 연구)

  • H.S. Lee;S.H. Kwon;H.J. Jo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • This paper proposes a new wave absorber made of flexible net structures. The motivation of this research is that the wave absorbers which already invented are not effective in small wave flume. To test the efficiency of the proposed water absorber, experiments were done for various wave length, the length of the wave absorber, and the areas of the wave absorber. The proposed new wave absorber demonstrated its efficiency when used in small-length wave flume.

  • PDF

An Experimental Study on Development of Wave Absorber (소파장치 개발에 관한 실험적 연구)

  • 이희성;박준수;권순홍
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.210-214
    • /
    • 2000
  • This paper proposes a new wave absorber made of flexible net structures. The motivation of this research is that the wave absorbers which already invented are not effective in small wave flume. The proposed new wave absorber demonstrated its efficiency when used in small-length wave flume.

  • PDF

A Study on FDTD Analysis and Fabrication of the Sheet-type Millimeter EM wave Absorber

  • Kim, Dae-Hun;Soo, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2010
  • In this paper, the EM wave absorber was developed for the 94-GHz detecting radar system. To analysis an EM wave absorber in millimeter wave band, we fabricated three absorber samples using carbon black and titanium dioxide and permalloy with chlorinated polyethylene. After measuring the complex relative permittivity, the absorption characteristics are simulated by 1D FDTD according to different thicknesses of less than 1.0 mm. Then, the EM wave absorber was fabricated based on the FDTD simulation. As a result, the measured results agreed well with the simulated ones, and the developed EM wave absorber with a thickness of 0.7 mm had the desired absorption characteristics of more than 14 dB in the frequency range of the 94-GHz band.

A Study on Composite EM Absorber's Absorption Characteristics Using Natural Lacquer by Binder (옻을 지지재로 사용한 복합형 전자파 흡수체의 흡수 특성에 관한 연구)

  • Choi, Dong-Han
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.622-629
    • /
    • 2003
  • Generally, a silicone rubber and a chloride polyethylene(CPE) have been used for the development of high-performance composite EM(ElectroMagnetic) wave absorber. In this study, the EM wave absorption abilities for natural lacquer which is newly suggested in this study as a binder for composite EM wave absorber were investigated to develop an improved EM wave absorber In addition, MnZn ferrite composite EM wave absorber mixed with the natural lacquer were prepared and their absorption ability was also investigated. MnZn ferrite composite EM wave absorber which employs the natural lacquer as a binder showed an improved EM wave absorption characteristics in comparison with the conventional binder such as a silicone rubber and a chloride polyethylene(CPE). The matching frequency and the absorption ability of EM wave absorber mixed with natural lacquer can be controled the change of the thickness of them.

  • PDF

Influence of a Structure by the Submerged Breakwater and the Porous Wave Absorber (수중방파제와 다공성 소파장치가 구조물에 미치는 영향)

  • Park, Jin-Ho;Jung, Tae-Hwa;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.225-228
    • /
    • 2008
  • There are many studies about submerged structures or porous wave absorbers to decrease damage of coast and structures. Submerged structures and porous wave absorber are decreasing energy of incoming wave by reflecting or dissipation with changing depth or with porous rubble mound. This study addresses the reflection and transmission of long wave from a trapezoidal breakwater and a vertical porous wave absorber at the same time. A systematic shape transfer is derived to determine wave reflection and transmission. And periodic solutions are matched at the slope and the front face of the absorber by assuming continuity of pressure and mass. The transmission coefficient is determined as a function of parameters describing the incoming waves, transmitting waves through the trapezoidal breakwater and the absorber characteristics.

  • PDF

Characteristics of wave propagation in a sloping-wall-type wave absorber

  • Zhu, Lixin;Lim, Hee Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.843-848
    • /
    • 2015
  • The objective of this study is to observe and optimize a typical ocean environment and reduce wave reflections in the wave flume. In order to generate ocean waves in the wave flume, a combination of a horizontal piston type wave generator and wave absorbers was installed in the channel. Two probes for measuring the wave heights, i.e., wave level gauges, were used to record the continuous variation of the wave surface, the phase difference, and the maximum (crest) and minimum (trough) points of the propagating waves. In order to optimize the shape and size of the propagating waves, several absorption methods were proposed. Apart from an active wave absorption method, we used methods that involved vertical porous plates, horizontal punching plates, and sloping-wall-type wave absorbers. To obtain the best propagating waves, a sloping-wall-type wave absorber was chosen and tested in terms of the constitutive filling materials and the location and shape of the plate. This study also focused on the theoretical prediction of the wave surface, separating them into the incident and reflective components. From the results, it is evident that the wave absorber comprising a hard filling material exhibits a better performance than the absorber comprising a soft material, i.e., the wave absorber can be a strong sink to control the energy of the incoming wave. In addition, larger wave absorbers correspond to lower reflectance because a larger volume can reduce the incoming wave energy. Therefore, at constant absorber conditions, the reflectance of the wave increases as the wave period increases. Finally, the reflectance of the wave was controlled to be less than 0.1 in this study so that the wave flume can be used to simulate an offshore environment.

A Study on the Method to Suppress Radiation-Noise with Electromagnetic Wave Absorber in the Rectangular Cavity Resonator (전파 흡수체에 의한 구형 공동 공진기의 방사노이즈 억제 방법에 관한 연구)

  • 김경용;김왕섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.19-23
    • /
    • 1991
  • A method for suppressing unwanted resonance modes by attaching an electromagnetic wave absorber onto a metal case was studied to prevent performance deterioration of electronic devices. The electromagnetic wave absorber fabricated for this study had an attenuation characteristics above 20dB in the frequency band from 450MHz, 1150MHz. A rectangular cavity resonator whose resonance frequencies of TE$_{101}$, TE$_{102}$ modes were 900MHz, 1250MHz, respectively, was made to measure attenuation for the electromagnetic wave absorber-metal assembly. The result showed that the resonance mode for high attenuation was sensitive to the location of electromagnetic wave absorber, and the attenuation characteristics above 20dB could be obtained when electromagnetic wave absorber was properly positioned.

  • PDF

A Study on Design and Fabrication of Complex Type EM Wave Absorber with Super Wide-band Characteristics

  • Kim Dae-Hun;Kim Dong-Il;Choi Chang-Mook;Son Jun-Young
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • In order to construct an Anechoic Chamber satisfying international standards for EMI testing, it has been recognized that the absorption characteristics of the EM wave absorber must be higher than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics was proposed and designed in order to satisfy the above requirements by using the Equivalent Material Constant Method(EMCM) and Finite Difference Time Domain(FDTD). The proposed absorber is to attach a pyramidal absorber onto a hemisphere-type absorber on a cutting cone-shaped ferrite. As a result, the proposed absorber has absorption characteristics higher than 20 dB over the frequency band from 30 MHz to more than 20 GHz.