• 제목/요약/키워드: Water electrolysis

검색결과 382건 처리시간 0.026초

해수의 염 농도와 탁도가 전기, UV 및 전기+UV 공정의 Artemia sp. 불활성화에 미치는 영향 (Effect of Salt Concentration and Turbidity on the Inactivation of Artemia sp. in Electrolysis UV, Electrolysis+UV Processes)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제28권3호
    • /
    • pp.291-301
    • /
    • 2019
  • This study was conducted to investigate the effect of salt concentration and turbidity on the inactivation of Artemia sp. by electrolysis, UV photolysis, electrolysis+UV process to treat ballast water in the presence of brackish water or muddy water caused by rainfall. The inactivation at different salt concentrations (30 g/L and 3 g/L) and turbidity levels (0, 156, 779 NTU) was compared. A decrease in salt concentration reduced RNO (OH radical generation index) degradation and TRO (Total Residual Oxidant) production, indicating that a longer electrolysis time is required to achieve a 100% inactivation rate in electrolysis process. In the UV process, the higher turbidity results in lower UV transmittance and lower inactivation efficiency of Artemia sp. Higher the turbidity resulted in lower ultraviolet transmittance in the UV process and lower inactivation efficiency of Artemia sp. A UV exposure time of over 30 seconds was required for 100% inactivation. Factors affecting inactivation efficiency of Artemia sp. in low salt concentration are in the order: electrolysis+UV > electrolysis > UV process. In the case of electrolysis+UV process, TRO is lower than the electrolysis process, but RNO is more decomposed, indicating that the OH radical has a greater effect on the inactivation effect. In low salt concentrations and high turbidity conditions, factors affecting Artemia sp. inactivation were in the order electrolysis > electrolysis+UV > UV process. When the salt concentration is low and the turbidity is high, the electrolysis process is affected by the salt concentration and the UV process is affected by turbidity. Therefore, the synergy due to the combination of the electrolysis process and the UV process was small, and the inactivation was lower than that of the single electrolysis process only affected by the salt concentration.

Durability enhancement of anion exchange membranes for water electrolysis: an updated review

  • Akter, Mahamuda;Park, Jong-Hyeok;Kim, Beom-Seok;Lee, Minyoung;Jeong, Dahye;Shin, Jiyun;Park, Jin-Soo
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.319-327
    • /
    • 2022
  • Ion exchange membranes have been developed from laboratory tools to industrial products with significant technical and trade impacts in the last 70 years. Today, ion exchange membranes are successfully applied for water and energy for different electro-membrane processes. Hydrogen could be produced by electrochemical water splitting using renewable energy, for example, solar, biomass, geothermal and wind energy. This review briefly summarizes the recent studies reporting the state-of-the-art anion-exchange membrane water electrolysis, especially focusing on the enhancement of the durability of anion-exchange membranes. Anion-exchange membrane water electrolysis could be used as inexpensive non-noble metal electrocatalysts that are capable of producing low cost of hydrogen. However, the main challenge of anion-exchange membrane water electrolysis is to increase the performance and durability. In this mini review, the limiting factors of the durability and the technology enhancing the durability will be discussed for anion exchange membrane water electrolysis.

수전해 반응에 의한 고분자전해질 연료전지 전극과 막의 열화 (Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis)

  • 정재현;신은경;정재진;나일채;추천호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.695-700
    • /
    • 2014
  • 고분자전해질 연료전지로 물을 전기분해하여 수소와 산소를 발생시킬 수 있다. 그러나 1.7V 이상의 높은 전압에서 수전해 반응이 일어나므로 전극과 고분자 전해질 막의 열화가 빠르게 진행된다. 수전해 과정에서 anode의 열화를 방지하기 위해 촉매로 지지체 없는 $IrO_2$를 보통 사용하는데 본 연구에서는 고분자전해질 연료전지용 Pt/C 촉매를 수전해 반응에 그대로 사용했을 때 전극과 막의 열화 현상을 분석하였다. 1.8~2.0 V 전압 범위에서 수전해 반응 후 고분자 전해질 연료전지 구동 조건에서 I-V, CV, 임피던스, LSV를 측정했다. 수전해 전압이 높을수록 전극과 막의 열화 속도가 증가하였다. 2.0 V에서 1분 동안 수전해 반응했을 때 수소 수율은 88%였고, 전극과 고분자 막이 열화되어 0.6 V에서 성능이 49% 감소하였다.

인삼의 표면 세척시스템을 개발을 위한 공정처리기술에 관한 연구 (Study on Process Development of Ginseng's Surface Washing System)

  • 이현석;권기현;정진웅;최창현;한재웅
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.234-242
    • /
    • 2009
  • This study was attempted to develop surface washing-system of ginseng. The effect of sterilization, washing and keeping freshness of ginseng through analyzing unit process were examined to establish optimal condition for washing system. Surface washing method of fresh ginseng used two way and full cone spray type. Sterilization was used at $2^{\circ}C$ water with electrolysis water of 50 and 80 ppm. Ginseng was sterilized with electrolysis water during 30 and 60 s, dehydrated during 1 min and dried during 1min at 30 and $50^{\circ}C$. Hardness of surface-washed ginseng showed good result on 1 min spraying time with 80 ppm electrolysis water at $10^{\circ}C$ storage. Ginseng with 80 ppm electrolysis water was sterilized better with $1.05{\times}103$. There are no changes with 0% on appearance quality at 80 ppm electrolysis.

도금폐수의 전해처리 (Electrolysis of Plating Waste Water)

  • 신석재;김동화
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.95-99
    • /
    • 1994
  • Recently, there has been considerable concern about waste water discharges of chromium. The Chromium(IV) is of particular concern because this form has been demonstrated to be public health hazard. Chromium(IV) could be removed by the method of electrolysis from plating waste water. It was found that almost all of chromium(IV) present could be treated by electrolysis at current, 3A and pH 8.

  • PDF

전이금속 옥살산염 기반 알칼라인 수전해 전극 응용기술 동향 (Transition-metal oxalate-based electrodes for alkaline water electrolysis : a review)

  • 하재윤;김용태;최진섭
    • 한국표면공학회지
    • /
    • 제55권2호
    • /
    • pp.38-50
    • /
    • 2022
  • As a low-cost and high-efficiency electrocatalysts with high performance and stability become a key challenge in the development of the practical use of water electrolysis, there is an intense interest in transition-metal oxalate-based materials. Transition-metal oxalate-based catalysts with excellent electrochemical performances have been widely applied in water electrolysis due to its low-cost and ease of synthesis. This review provides a useful summary on the development of transition-metal oxalate as potential catalysts for water electrolysis with a focus on the structural and compositional alteration, role of oxalate anion, and enhanced electrochemical performances.

국내외 수전해 기술 및 대규모 실증 프로젝트 진행 현황 (Current Status of Water Electrolysis Technology and Large-scale Demonstration Projects in Korea and Overseas)

  • 백종민;김수현
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.14-26
    • /
    • 2024
  • Global efforts continue with the goal of transition to a "carbon neutral (net zero)" society with zero carbon emissions by 2050. For this purpose, the technology of water electrolysis is being developed, which can store electricity generated from renewable energies in large quantities and over a long period of time as hydrogen. Recently, various research and large-scale projects on 'green hydrogen', which has no carbon emissions, are being conducted. In this paper, a comparison of water electrolysis technologies was carried out and, based on data provided by the International Energy Agency (IEA), large-scale water electrolysis demonstration projects were analyzed by classifying them by technology, power supply, country and end user. It is expected that through the analysis of large-scale water electrolysis demonstration projects, research directions and road maps can be provided for the development/implementation of commercial projects in the future.

전기분해와 UV 조사에 의한 수중 Rhodamine B의 제거(II) (Removal of Rhodamine B in Water by Ultraviolet Radiation Combined with Electrolysis(II))

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.667-674
    • /
    • 2009
  • This study has carried out to evaluate the effect of NaCI as electrolyte of single (electrolysis and UV process) and complex (electrolysis/UV) processes for the purpose of removal and mineralization of Rhodamine B (RhB) dye in water. It also evaluated the synergetic effect on the combination of electrolysis and UV process. The experimental results showed that RhB removal of UV process was decreased with increase of NaCl, while RhB removal of electrolysis and electrolysis/UV process was increased with increase of NaCI. The decolorization rate of the RhB solution in every process was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. Absorption spectra of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the bulk solution: concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the breakup of the chromophores. It was observed that RhB removal in electrolysis/UV process is similar to the sum of the UV and electrolysis. However, it was found that the COD of RhB could be degraded more efficiently by the electrolysis/UV process than the sum of the two individual process. A synergetic effect was demonstrated in electrolysis/UV process.

수전해용 이오노머 분자동역학 모델 개발 (Development of Molecular Dynamics Model for Water Electrolysis Ionomer)

  • 강호성;박치훈;이창현
    • 멤브레인
    • /
    • 제30권6호
    • /
    • pp.433-442
    • /
    • 2020
  • 본 연구에서는 수전해용 ionomer의 분자동역학 전산모사 모델 제작을 위하여, 과량의 물 분자가 존재하는 수전해 시스템의 특성을 반영한 ionomer 모델을 제작한 후, 기존 연료전지용 전해질막 전산모사 조건에 맞춰 제작한 ionomer 모델과 비교하였다. 최종적으로 얻어진 모델은 과불소계 ionomer의 중요 특징 중 하나인 명확한 상분리 및 수화채널이 관찰되었으며, 과량의 물 및 높은 운전 온도 조건에서도 물에 녹지 않고 안정된 구조를 나타내었다. 제조된 ionomer 모델에서는 과량의 물분자로 인한 이온 희석 효과로 이온 전달 성능 감소가 나타났으며, 반대로 수소 기체의 투과는 더 증가할 것으로 분석되었다. 따라서 이러한 수전해 시스템의 특성을 반영한 수전해용 ionomer 분자 구조 설계 전략이 필요하고, 분자동역학 전산모사 연구 시에도 이를 감안한 수전해용 ionomer 모델 제작이 필요하다.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.