Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.3.183

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells  

Cho, Min Kyung (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Lim, Ahyoun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Lee, So Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University)
Park, Hyun S. (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.3, 2017 , pp. 183-196 More about this Journal
Abstract
The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.
Keywords
Water electrolysis; Anion exchange membrane; Electrocatalyst; Membrane electrode assembly; Single cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng, S.-H. Yu, Chemical Science, 2017, 8(2), 968-973.   DOI
2 Y. Jin, X. Yue, C. Shu, S. Huang, P.K. Shen, J. Mater. Chem. A, 2017, 5(6), 2508-2513.   DOI
3 X. Chen, G. Zeng, T. Gao, Z. Jin, Y. Zhang, H. Yuan, D. Xiao, Electrochem. Commun., 2017, 74, 42-47.   DOI
4 Y. Fang, X. Li, S. Zhao, J. Wu, F. Li, M. Tian, X. Long, J. Jin, J. Ma, RSC Adv., 2016, 6(84), 80613-80620.   DOI
5 J. Wang, K. Li, H.x. Zhong, D. Xu, Z.l. Wang, Z. Jiang, Z.j. Wu, X.b. Zhang, Angew. Chem. Int. Ed., 2015, 54(36), 10530-10534.   DOI
6 B. Jovic, U. Lacnjevac, V. Jovic, N. Krstajic, J. Electroanal. Chem., 2015, 754, 100-108.   DOI
7 J. Parrondo, M. George, C. Capuano, K.E. Ayers, V. Ramani, J. Mater. Chem. A, 2015, 3(20), 10819-10828.   DOI
8 P. Hosseini-Benhangi, M.A. Garcia-Contreras, A. Alfantazi, E.L. Gyenge, J. Electrochem. Soc., 2015, 162(12), F1356-F1366.   DOI
9 S.H. Ahn, S.J. Yoo, H.-J. Kim, D. Henkensmeier, S.W. Nam, S.-K. Kim, J.H. Jang, Appl. Catal., B, 2016, 180, 674-679.   DOI
10 W. Badawy, H. Nady, G.A. El-Hafez, J. Alloys Compd., 2017, 699, 1146-1156.   DOI
11 R. Solmaz, A. Salci, H. Yuksel, M. Dogrubas, G. Kardas, Int. J. Hydrogen Energy, 2017, 42(4), 2464-2475.   DOI
12 P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su, Q. Chen, J. Mater. Chem. A, 2017, 5(11), 5475-5485.   DOI
13 M. Gao, C. Yang, Q. Zhang, Y. Yu, Y. Hua, Y. Li, P. Dong, Electrochim. Acta, 2016, 215, 609-616.   DOI
14 B. Zhang, H.-H. Wang, H. Su, L.-B. Lv, T.-J. Zhao, J.- M. Ge, X. Wei, K.-X. Wang, X.-H. Li, J.-S. Chen, Nano Res., 2016, 9(9), 2606-2615.   DOI
15 C. Gonzalez-Buch, I. Herraiz-Cardona, E.M. Ortega, S. Mestre, V. Perez-Herranz, Int. J. Hydrogen Energy, 2016, 41(2), 764-772.   DOI
16 R. Kavian, S.-I. Choi, J. Park, T. Liu, H.-C. Peng, N. Lu, J. Wang, M.J. Kim, Y. Xia, S.W. Lee, J. Mater. Chem. A, 2016, 4(32), 12392-12397.   DOI
17 B. Pierozynski, T. Mikolajczyk, Electrocatalysis, 2016, 7(2), 121-126.   DOI
18 Y. Liu, G.-D. Li, L. Yuan, L. Ge, H. Ding, D. Wang, X. Zou, Nanoscale, 2015, 7(7), 3130-3136.   DOI
19 B. Jovic, V. Jovic, U. Lacnjevac, L. Gajic-Krstajic, N. Krstajic, Int. J. Hydrogen Energy, 2015, 40(33), 10480-10490.   DOI
20 M. Wang, Z. Wang, X. Yu, Z. Guo, Int. J. Hydrogen Energy, 2015, 40(5), 2173-2181.   DOI
21 L. Han, S. Dong, E. Wang, Adv. Mater., 2016, 28, 9266-9291.   DOI
22 B. Bladergroen, H. Su, S. Pasupathi, V. Linkov, Overview of Membrane Electrode Assembly Preparation Methods for Solid Polymer electrolyte Electrolyzer, in: D.J. Kleperis (Ed.) Electrolysis, InTech, 2012.
23 T. Suzuki, S. Tsushima, S. Hirai, Int. J. Hydrogen Energy, 2011, 36(19), 12361-12369.   DOI
24 K.-H. Kim, K.-Y. Lee, H.-J. Kim, E. Cho, S.-Y. Lee, T.- H. Lim, S.P. Yoon, I.C. Hwang, J.H. Jang, Int. J. Hydrogen Energy, 2010, 35(5), 2119-2126.   DOI
25 S. Jeon, J. Lee, G.M. Rios, H.-J. Kim, S.-Y. Lee, E. Cho, T.-H. Lim, J. Hyun Jang, Int. J. Hydrogen Energy, 2010, 35(18), 9678-9686.   DOI
26 M.K. Cho, H.-Y. Park, S.Y. Lee, B.-S. Lee, H.-J. Kim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, J. Han, H.S. Park, Y.-E. Sung, J.H. Jang, Electrochim. Acta, 2017, 224, 228-234.   DOI
27 D.S. Hwang, C.H. Park, S.C. Yi, Y.M. Lee, Int. J. Hydrogen Energy, 2011, 36(16), 9876-9885.   DOI
28 S. Kamarajugadda, S. Mazumder, J. Power Sources, 2008, 183(2), 629-642.   DOI
29 Y. Qiu, H. Zhang, H. Zhong, F. Zhang, Int. J. Hydrogen Energy, 2013, 38(14), 5836-5844.   DOI
30 M. Yazdanpour, A. Esmaeilifar, S. Rowshanzamir, Int. J. Hydrogen Energy, 2012, 37(15), 11290-11298.   DOI
31 A. Therdthianwong, P. Manomayidthikarn, S. Therdthianwong, Energy, 2007, 32(12), 2401-2411.   DOI
32 O. Okur, C. İyigun Karadag, F.G. Boyaci San, E. Okumus, G. Behmenyar, Energy, 2013, 57, 574-580.   DOI
33 Z.X. Liang, T.S. Zhao, C. Xu, J.B. Xu, Electrochim. Acta, 2007, 53(2), 894-902.   DOI
34 J. Zhang, H. Zhang, J. Wu, J. Zhang, Chapter 3 - Techniques for PEM Fuel Cell Testing and Diagnosis, in: Pem Fuel Cell Testing and Diagnosis, Elsevier, Amsterdam, 2013.
35 L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang, J. Lu, Energy Environ. Sci., 2012, 5(7), 7869-7871.   DOI
36 J. Parrondo, C.G. Arges, M. Niedzwiecki, E.B. Anderson, K.E. Ayers, V. Ramani, RSC Adv., 2014, 4(19), 9875-9879.   DOI
37 J. Parrondo, V. Ramani, J. Electrochem. Soc., 2014, 161(10), F1015-F1020.   DOI
38 D. Aili, M.K. Hansen, R.F. Renzaho, Q. Li, E. Christensen, J.O. Jensen, N.J. Bjerrum, J. Membr. Sci., 2013, 447, 424-432.   DOI
39 S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, M. Velan, Int. J. Hydrogen Energy, 2013, 38(35), 14934-14942.   DOI
40 X. Wu, K. Scott, Int. J. Hydrogen Energy, 2013, 38(8), 3123-3129.   DOI
41 X. Wu, K. Scott, J. Power Sources, 2012, 206, 14-19.   DOI
42 X. Wu, K. Scott, F. Xie, N. Alford, J. Power Sources, 2014, 246, 225-231.   DOI
43 A. Abdelrasoul, H. Doan, A. Lohi, C.-H. Cheng, ChemBioEng Reviews, 2015, 2(1), 22-43.   DOI
44 J. Pan, Y. Li, L. Zhuang, J. Lu, Chemical Communications, 2010, 46(45), 8597-8599.   DOI
45 Varcoe, John R., et al., Energy Environ. Sci., 2014, 7(10), 3135-3191.   DOI
46 N.T. Rebeck, Y. Li, D.M. Knauss, Journal of Polymer Science Part B: Polymer Physics, 2013, 51(24), 1770-1778.   DOI
47 Z. Wang, J. Parrondo, V. Ramani, J. Electrochem. Soc., 2016, 163(8), F824-F831.   DOI
48 K.H. Gopi, S.G. Peera, S.D. Bhat, P. Sridhar, S. Pitchumani, Int. J. Hydrogen Energy, 2014, 39(6), 2659-2668.   DOI
49 C.G. Arges, L. Wang, J. Parrondo, V. Ramani, J. Electrochem. Soc., 2013, 160(11), F1258-F1274.   DOI
50 Y.S. Li, T.S. Zhao, Int. J. Hydrogen Energy, 2012, 37(5), 4413-4421.   DOI
51 X. Wu, K. Scott, J. Power Sources, 2012, 214, 124-129.   DOI
52 Y. Furukawa, K. Tadanaga, A. Hayashi, M. Tatsumisago, Solid State Ionics, 2011, 192(1), 185-187.   DOI
53 C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem. Int. Ed., 2014, 53(5), 1378-1381.   DOI
54 S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B.R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Catal. Today, 2016, 262, 170-180.   DOI
55 Z. Feng, W.T. Hong, D.D. Fong, Y.-L. Lee, Y. Yacoby, D. Morgan, Y. Shao-Horn, Acc. Chem. Res., 2016, 49(5), 966-973.   DOI
56 I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov, T. Vitanov, J. Electroanal. Chem., 1997, 429(1-2), 157-168.   DOI
57 A.B. Rao, E.S. Rubin, Environ. Sci. Technol., 2002, 36(20), 4467-4475.   DOI
58 Hoffert, Martin I., et al., Science, 2002, 298(5595), 981-987.   DOI
59 J.M. Reilly, The Bridge, 2015, 45(2), 6-15.
60 R. Jackson, P. Friedlingstein, J. Canadell, R. Andrew, The Bridge, 2015, 45(2), 16-21.
61 S. Kerdsuwan, K. Laohalidanond, Energy Procedia, 2015, 79, 125-130.   DOI
62 A. Zuttel, Mitigation and Adaptation Strategies for Global Change, 2007, 12(3), 343-365.   DOI
63 M. Melaina, M. Penev, D. Heimiller, NREL technical report, 2013, NREL/TP-5400-55626.
64 G. Collodi, F. Wheeler, Chem.Eng.Trans., 2010, 19, 37-42.
65 G. Simbolotti, IEA Energy Technology Essentials, IEA, 2007.
66 W. Kreuter, H. Hofmann, Int. J.Hydrogen Energy, 1998, 23(8), 661-666.   DOI
67 K. Zeng, D. Zhang, Prog. Energy Combust. Sci., 2010, 36(3), 307-326.   DOI
68 J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal.Today, 2009, 139(4), 244-260.   DOI
69 P. Millet, F. Andolfatto, R. Durand, Int. J. Hydrogen Energy, 1996, 21, 87-93.
70 A. Goni-Urtiaga, D. Presvytes, K. Scott, Int. J. Hydrogen Energy, 2012, 37(4), 3358-3372.   DOI
71 K. Ito, T. Sakaguchi, Y. Tsuchiya, Polymer Electrolyte Membrane Water Electrolysis, in: Hydrogen Energy Engineering, Springer, (2016) 143-149.
72 K. Christopher, R. Dimitrios, Energy Environ.Sci., 2012, 5(5, 6640-6651.   DOI
73 J.R. McKone, N.S. Lewis, H.B. Gray, Chem.Mater., 2013, 26(1), 407-414.   DOI
74 InfoMine Inc. (2017) Retrieved March, 2017, from http://www.infomine.com/investment/metal-prices.
75 Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.-Y. Wang, J. Am. Chem. Soc., 2012, 134(22), 9054-9057.   DOI
76 V.K. Puthiyapura, S. Pasupathi, H. Su, X. Liu, B. Pollet, K. Scott, Int. J. Hydrogen Energy, 2014, 39(5), 1905-1913.   DOI
77 L. Zeng, T.S. Zhao, Nano Energy, 2015, 11, 110-118.   DOI
78 D. Lu, D. Li, L. Wen, L. Xue, J. Membr.Sci., 2017, 533, 210-219.   DOI
79 X. Gong, X. Yan, T. Li, X. Wu, W. Chen, S. Huang, Y. Wu, D. Zhen, G. He, J. Membr. Sci., 2017, 523, 216-224.   DOI
80 X. He, X. Jiang, Z. Wang, Y. Deng, Z. Han, Y. Yang, D. Chen, Polym. Eng. Sci., 2017 (Browse Early View Article, DOI: 10.1002/pen.24524).
81 WANG, Lianqin, et al., Green Chemistry, 2017, 19(3), 831-843.   DOI
82 J. Li, X. Yan, X. Ruan, W. Zheng, G. He, J. Dai, R. Deng, Polym. Mater. Sci. Eng., 2016, 32, 38-42.
83 Z. Hu, W. Tang, D. Ning, X. Zhang, H. Bi, S. Chen, Fuel Cells, 2016, 16(5), 557-567.   DOI
84 C. Wang, B. Lin, G. Qiao, L. Wang, L. Zhu, F. Chu, T. Feng, N. Yuan, J. Ding, Mater. Lett., 2016, 173, 219-222.   DOI
85 T. Bayer, B.V. Cunning, R. Selyanchyn, T. Daio, M. Nishihara, S. Fujikawa, K. Sasaki, S.M. Lyth, J. Membr.Sci., 2016, 508, 51-61.   DOI
86 T. Feng, B. Lin, S. Zhang, N. Yuan, F. Chu, M.A. Hickner, C. Wang, L. Zhu, J. Ding, J. Membr.Sci., 2016, 508, 7-14.   DOI
87 H. Wu, W. Jia, Y. Liu, J. Mater. Sci., 2017, 52(3), 1704-1716.   DOI
88 A.G. Wright, J. Fan, B. Britton, T. Weissbach, H.F. Lee, E.A. Kitching, T.J. Peckham, S. Holdcroft, Energy Environ. Sci., 2016, 9(6), 2130-2142.   DOI
89 B. Shi, Y. Li, H. Zhang, W. Wu, R. Ding, J. Dang, J. Wang, J. Membr.Sci., 2016, 498, 242-253.   DOI
90 Z. Li, W. Wang, Y. Chen, C. Xiong, G. He, Y. Cao, H. Wu, M.D. Guiver, Z. Jiang, J. Mater. Chem. A, 2016, 4(6), 2340-2348.   DOI
91 C. Yang, S. Wang, W. Ma, S. Zhao, Z. Xu, G. Sun, J. Mater. Chem. A, 2016, 4(10), 3886-3892.   DOI
92 D. Lu, L. Wen, L. Xue, RSC Adv., 2016, 6(75), 71431-71440.   DOI
93 Y. Yang, N. Sun, P. Sun, L. Zheng, RSC Adv., 2016, 6(30), 25311-25318.   DOI
94 F. Song, Y. Fu, Y. Gao, J. Li, J. Qiao, X.D. Zhou, Y. Liu, Electrochim. Acta, 2015, 177, 137-144.   DOI
95 Y. Gao, F. Song, J. Qiao, S. Chen, X. Zhao, J. Zhang, Electrochim. Acta, 2015, 177, 201-208.   DOI
96 L. Wu, Q. Pan, J.R. Varcoe, D. Zhou, J. Ran, Z. Yang, T. Xu, J. Membr. Sci., 2015, 490, 1-8.   DOI
97 C. Yang, S. Wang, W. Ma, L. Jiang, G. Sun, J. Membr. Sci., 2015, 487, 12-18.   DOI
98 C. Yang, S. Wang, W. Ma, L. Jiang, G. Sun, J. Mater. Chem. A, 2015, 3(16), 8559-8565.   DOI
99 S.D. Poynton, J.R. Varcoe, Solid State Ionics, 2015, 277, 38-43.   DOI
100 W.-H. Lee, A.D. Mohanty, C. Bae, ACS Macro Lett., 2015, 4(4), 453-457.   DOI
101 J. Li, X. Yan, Y. Zhang, B. Zhao, G. He, RSC Adv., 2016, 6(63), 58380-58386.   DOI
102 P. Papakonstantinou, V. Deimede, RSC Adv., 2016, 6(115), 114329-114343.   DOI
103 J. Fang, Y. Wu, Y. Zhang, M. Lyu, J. Zhao, Int. J. Hydrogen Energy, 2015, 40(36), 12392-12399.   DOI
104 S. Chen, Y. Song, F. Song, X. Zhao, J. Qiao, X.-D. Zhou, ECS Trans., 2015, 66(3), 111-116.   DOI
105 Z. Li, Z. Jiang, H. Tian, S. Wang, B. Zhang, Y. Cao, G. He, Z. Li, H. Wu, J. Power Sources, 2015, 288, 384-392.   DOI
106 L.A. Diaz, J. Hnát, N. Heredia, M.M. Bruno, F.A. Viva, M. Paidar, H.R. Corti, K. Bouzek, G.C. Abuin, J. Power Sources, 2016, 312, 128-136.   DOI
107 G. Merle, M. Wessling, K. Nijmeijer, J. Membr. Sci., 2011, 377(1), 1-35.   DOI
108 T. Zhan, X. Liu, S. Lu, W. Hou, Appl. Catal., B, 2017, 205, 551-558.   DOI
109 J. Yang, T. Fujigaya, N. Nakashima, Sci. Rep., 2017, 7, 45384-45392.   DOI
110 S. Dutta, C. Ray, Y. Negishi, T. Pal, ACS Appl. Mater. Interfaces, 2017, 9, 8134-8141.   DOI