Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.2.38

Transition-metal oxalate-based electrodes for alkaline water electrolysis : a review  

Ha, Jaeyun (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.2, 2022 , pp. 38-50 More about this Journal
Abstract
As a low-cost and high-efficiency electrocatalysts with high performance and stability become a key challenge in the development of the practical use of water electrolysis, there is an intense interest in transition-metal oxalate-based materials. Transition-metal oxalate-based catalysts with excellent electrochemical performances have been widely applied in water electrolysis due to its low-cost and ease of synthesis. This review provides a useful summary on the development of transition-metal oxalate as potential catalysts for water electrolysis with a focus on the structural and compositional alteration, role of oxalate anion, and enhanced electrochemical performances.
Keywords
Transition metal; Oxalate; Water electrolysis; Electrocatalysts;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. Wang, T. A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting, Nanoscale, 7 (2015) 19764-19788.   DOI
2 H. R. Devi, R. Chikkegowda, D. Rangappa, A. K. Yadav, Z. Chen, K. K. Nanda, Trimetallic oxide-hydroxide porous nanosheets for efficient water oxidation, Chem. Eng. J., 435 (2022) 135019.   DOI
3 A. Verma, R. Kore, D.R. Corbin, M.B. Shiflett, Metal recovery using oxalate chemistry: a technical review, Ind. Eng. Chem. Res., 58 (2019) 15381-15393.   DOI
4 Y. Duan, Z. Huang, X. Dong, J. Ren, L. Lin, S. Wu, R. Jia, X. Xu, A comprehensive evaluation of Co, Ni, Cu and Zn doped manganese oxalate for lithium storage, J. Solid State Chem., 306 (2022) 122728.   DOI
5 X. Gao, D. Chen, J. Qi, F. Li, Y. Song, W. Zhang, R. Cao, NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation, Small, 15 (2019) 1904579.   DOI
6 X. Liu, J. Jiang, L. Ai, Non-precious cobalt oxalate microstructures as highly efficient electrocatalysts for oxygen evolution reaction, J. Mater. Chem. A, 3 (2015) 9707-9713.   DOI
7 C. G. Morales-Guio, L. Liardet, X. Hu, Oxidatively electrodeposited thin-film transition metal (oxy) hydroxides as oxygen evolution catalysts, J. Am. Chem. Soc., 138 (2016) 8946-8957.   DOI
8 S. Ghosh, R. Jana, S. Ganguli, H.R. Inta, G. Tudu, H.V. Koppisetti, A. Datta, V. Mahalingam, Nickel-cobalt oxalate as an efficient non-precious electrocatalyst for an improved alkaline oxygen evolution reaction, Nanoscale Adv., 3 (2021) 3770-3779.   DOI
9 J. Qi, W. Zhang, R. Cao, Aligned cobaltbased Co@ CoOx nanostructures for efficient electrocatalytic water oxidation, Chem. Comm., 53 (2017) 9277-9280.   DOI
10 Y. Du, Z. Wang, H. Li, Y. Han, Y. Liu, Y. Yang, Y. Liu, L. Wang, Controllable synthesized CoP-MP (M= Fe, Mn) as efficient and stable electrocatalyst for hydrogen evolution reaction at all pH values, Int. J. Hydrog. Energy, 44 (2019) 19978-19985.   DOI
11 K. R. Park, J. E. Jeon, K. Kim, N. Oh, Y. H. Ko, J. Lee, S. H. Lee, J. H. Ryu, H. Han, S. Mhin, Synthesis of rod-type Co2.4Mn0.6O4 via oxalate precipitation for water splitting catalysts, Appl. Surf. Sci., 510 (2020) 145390.   DOI
12 T. Kou, S. Wang, J. L. Hauser, M. Chen, S. R. Oliver, Y. Ye, J. Guo, Y. Li, Ni ofam-supported Fe-doped β-Ni (OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction, ACS Energy Lett., 4 (2019) 622-628.   DOI
13 A.T. Bell, Integrated Solar Fuel Generators, I. D. Sharp, H. A. Atwater, H.-J. Lewerenz, Eds., The Royal Society of Chemistry, Cambs., (2019) 79-116.
14 X. Qiao, H. Kang, Y. Li, K. Cui, X. Jia, X. Wu, W. Qin, Novel FeNi-based nanowires network catalyst involving hydrophilic channel for oxygen evolution reaction, Small, (2022) 2106378.
15 S. Yao, H. Wei, Y. Zhang, X. Zhang, Y. Wang, J. Liu, H.H. Tan, T. Xie, Y. Wu, Controlled growth of porous oxygendeficient NiCo2O4 nanobelts as highefficiency electrocatalysts for oxygen evolution reaction, Catal. Sci. Technol., 11 (2021) 264-271.   DOI
16 Z. Ye, Y. Qie, Z. Fan, Y. Liu, Z. Shi, H. Yang, Soft magnetic Fe5C2-Fe3C@C as an electrocatalyst for the hydrogen evolution reaction, Dalton Trans., 48 (2019) 4636-4642.   DOI
17 T. Kou, M. Chen, F. Wu, T.J. Smart, S. Wang, Y. Wu, Y. Zhang, S. Li, S. Lall, Z. Zhang, Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction, Nat. Commun., 11 (2020) 1-10.   DOI
18 T. Kawawaki, Y. Kataoka, S. Ozaki, M. Kawachi, M. Hirata, Y. Negishi, Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters, Chem. Comm., 57 (2021) 417-440.   DOI
19 K. K. Yadav, S. K. Guchhait, R. Wadhwa, M. Jha, Surface phosphorization of nickel oxalate nanosheets to stabilize ultrathin nickel cyclotetraphosphate nanosheets for efficient hydrogen generation, Mater. Res. Bull., 139 (2021) 111275.   DOI
20 E. Haghi, K. Raahemifar, M. Fowler, Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid, Energy Policy, 113 (2018) 206-222.   DOI
21 J. E. Lee, K. J. Jeon, P. L. Show, S. C. Jung, Y. J. Choi, G. H. Rhee, K. Y. A. Lin, Y. K. Park, Mini review on H2 production from electrochemical water splitting according to special nanostructured morphology of electrocatalysts, Fuel, 308 (2022) 122048.   DOI
22 T. Jiangnan, J. Jing, L. Yang, M. Xiong, Development status and trend of green hydrogen energy technology, Distributed Energy Resources, 6 (2021) 8-13.
23 Y. Zhou, R. Li, Z. Lv, J. Liu, H. Zhou, C. Xu, Green hydrogen: A promising way to the carbon-free society, Chin. J. Chem. Eng., (2022) 2-13.
24 Y. Z. Wang, M. Yang, Y. M. Ding, N. W. Li, L. Yu, Recent advances in complex hollow electrocatalysts for water splitting, Adv. Funct. Mater., 32 (2022) 2108681.   DOI
25 M. Kim, J. Ha, Y. T. Kim, J. Choi, Technology trends in stainless steel for water splitting application, J. Korean Electrochem. Soc., 24 (2021) 13-27.   DOI
26 J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts, Adv. Mater., 31 (2019) 1808167.   DOI
27 H. Sun, W. Jung, Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A, (2021) 15506-15521.
28 B. Zhang, Y. Zheng, T. Ma, C. Yang, Y. Peng, Z. Zhou, M. Zhou, S. Li, Y. Wang, C. Cheng, Designing MOF nanoarchitectures for electrochemical water splitting, Adv. Mater., 33 (2021) 2006042.   DOI
29 C. Li, J. B. Baek, Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction, ACS Omega, 5 (2019) 31-40.   DOI
30 J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A. Abudula, G. Guan, Earth-abundant transition-metalbased bifunctional catalysts for overall electrochemical water splitting: A review, J. Alloys Compd., 819 (2020) 153346.   DOI
31 M. Wang, L. Zhang, Y. He, H. Zhu, Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting, J. Mater. Chem. A, 9 (2021) 5320-5363.   DOI
32 J. S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, Adv. Energy Mater., 8 (2018) 1702774.   DOI
33 N. Li, Q. Li, X. Guo, M. Yuan, H. Pang, Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry, Chem. Eng. J., 372 (2019) 551-571.   DOI
34 J. Ha, Y. T. Kim, J. Choi, In situ precipitation-induced growth of leaf-like CuO nanostructures on Cu-Ni alloys for binder-free anodes in Li-Ion batteries, ChemSusChem, 13 (2020) 419-425.   DOI
35 Y. U. Park, J. Kim, H. Gwon, D. H. Seo, S. W. Kim, K. Kang, Synthesis of multicomponent olivine by a novel mixed transition metal oxalate coprecipitation method and electrochemical characterization, Chem. Mater., 22 (2010) 2573-2581.   DOI
36 J. Ha, M. Kim, Y. T. Kim, J. Choi, Ni0.67Fe0.33 Hydroxide incorporated with oxalate for highly efficient oxygen evolution reaction, ACS Appl. Mater. Interfaces, 13 (2021) 42870-42879.   DOI
37 Y. Wei, X. Ren, H. Ma, X. Sun, Y. Zhang, X. Kuang, T. Yan, H. Ju, D. Wu, Q. Wei, CoC2O4· 2H2O derived Co3O4 nanorods array: a high-efficiency 1D electrocatalyst for alkaline oxygen evolution reaction, Chem. Comm., 54 (2018) 1533-1536.   DOI
38 J. W. Kim, J. K. Lee, D. Phihusut, Y. Yi, H. J. Lee, J. Lee, Self-organized one-dimensional cobalt compound nanostructures from CoC2O4 for superior oxygen evolution reaction, J. Phys. Chem. C, 117 (2013) 23712-23715.   DOI
39 D. Phihusut, J. D. Ocon, B. Jeong, J. W. Kim, J. K. Lee, J. Lee, Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst, Electrochim. Acta, 140 (2014) 404-411.   DOI
40 S. J. Kim, Y. T. Kim, J. Choi, Facile and rapid synthesis of zinc oxalate nanowires and their decomposition into zinc oxide nanowires, J. Cryst. Growth, 312 (2010) 2946-2951.   DOI