• Title/Summary/Keyword: Waste to Energy Plant

Search Result 286, Processing Time 0.034 seconds

Radiological Impact on Decommissioning Workers of Operating Multi-unit NPP (다수호기 원전 운영에 따른 원전 해체 작업자에 대한 방사선학적 영향)

  • Lee, Eun-hee;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • The decommissioning of one nuclear power plant in a multi-unit nuclear power plant (multi-unit NPP) site may pose radiation exposure risk to decommissioning workers. Thus, it is essentially required to evaluate the exposure dose of decommissioning workers of operating multi-unit NPPs nearby. The ENDOS program is a dose evaluation code developed by the Korea Atomic Energy Research Institute (KAERI). As two sub-programs of ENDOS, ENDOS-ATM to anticipate atmospheric transport and ENDOS-G to calculate exposure dose by gaseous radioactive effluents are used in this study. As a result, the annual maximum individual dose for decommissioning workers is estimated to be $2.31{\times}10^{-3}mSv{\cdot}y^{-1}$, which is insignificant compared with the effective dose limit of $1mSv{\cdot}y^{-1}$ for the public. Although it is revealed that the exposure dose of operating multi-unit NPPs does not result in a significant impact on decommissioning workers, closer examination of the effect of additional exposure due to actual demolition work is required. The calculation method of this study is expected to be utilized in the future for planned decommissioning projects in Korea. Because domestic NPPs are located in multi-unit sites, similar situations may occur.

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

Some Physical Oceanographic Survey in the Sea Off Kori (고리해역에 있어서의 표류병 및 염료확산시험)

  • Chang, Jee-Won;Park, Shi-Yohl;Soh, Doo-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 1971
  • The forth dye diffusion experiment, which was authorized by the Office of Atomic Energy, and some physical aspect of oceanographic observations were carried out in the sea off Kori in September 29-October 1, 1971. In a series of drift bottle experiments the 337 bottles were released. And bottom topography by echo soundings in the survey was well approached to the chart No. 433, Kori and Approaches, published by Hydrographic Office in October 1970. Results deduced from this survey were as follows: 1. A small ridge extends from Kori-Mal tip in southwestward over 1300 meters, and eastside of which is plain and a little sloping while westside of which cliffy and very steeper sloping. 2. A gyre was formed in the waters from Kori-Mal to Mat-dum in cum sole definitely at flood tide and in contra solem less definitely at ebb tide. And that the gyre rose and decayed with the turn of the tide. 3. Diffusion coefficients of 2.5% Rhodamine B solution of 200 liters were 9. 3 ${\times}{10^2}$ c$m^2$/sec in the waters Kori-Mal to Mat-dum and 28.6${\times}{10^2}$ c$m^2$/sec in the waters eastside of Mat-dum at the time after 26 minutes from releasing of the dye solution. 4. According to the above results the eastside of Mat-dum is rather recommendable to settle as the point for the outlet of drainage or waste of atomic power plant to be constructed.

  • PDF

Evaluation of Physical Shear Pre-treatment and Biogas Characteristics using Mixed Sludge (물리적 파쇄 가용화를 이용한 혼합슬러지의 가용화 효율 및 바이오가스 특성 평가)

  • Choi, Jae-Hoon;Jeong, Seong-Yeob;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.362-369
    • /
    • 2019
  • In this study, biodegradation efficiency improvement of mixed sludge for the anaerobic digestion process in wastewater treatment plant was investigated. In order to release the organic material contained in the sludge cell and promote the hydrolysis step, mixed sludge of 7% TS (Total Solids) was physically shear-treated at a shear strength of 1,000 ~ 4,000 rpm and a maximum of 120 mins. As a result of the comparison between mixed sludge before and after the treatment, the concentration of $SCOD_{Cr}$(Soluble Chemical Oxygen Demand-chromium method) was increased through the conversion of granular organic matter into dissolved organic matter as shear strength and treatment time increases. The solubilization efficiency increased rapidly after 30 min of solubilization application time, and they were 11.23 %, 20.10 %, 22.52 % and 25.43% at 120 min for each shear strength conditions, respectively. Additionally, the BMP(Biochemical Methane Potential) test was conducted with the optimized samples to determine the increase of methane production by the shear pre-treatment. Consequently, methane production of each samples were 0.275, 0.310, 0.323 and $0.335m^3/kg\;VS_{add}$, which indicates that methane production was increased to a maximum of 21.28% compared to the control without the solubilization process ($0.262m^3/kg\;VS_{add}$). As a result, the physical shear-treatment is a promising process for sewage sludge pre-treatment to reduce the organic waste and increase the energy production.

Cesium removal in water using magnetic materials ; A review (자성체 물질을 이용한 수중의 세슘제거 동향)

  • Yeo, Wooseok;Cho, Byungrae;Kim, Jong Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.395-408
    • /
    • 2018
  • Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.

Thickening of Activated Sludge Using Low Pressure Flotation Pilot System (파일롯 규모의 저압형 부상장치를 이용한 하수슬러지 농축에 관한 연구)

  • Kim, Ji Tae;Oh, Joon Taek;Kim, Jong Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.172-177
    • /
    • 2014
  • Low pressure air flotation (LAF) pilot plant for sludge thickening was installed in Chung Nam N.S. municipal waste water treatment plant to verify its application possibility. Effects of operating conditions such as coagulant dosages and microbubble water ratio on thickening of the mixed sludge were examined. Microbubbles which were generated in the chamber of $1.5kgf/cm^2$ by high speed collision method with foaming agent were used to float sludge. Solid loading of $30kg/m^2/hr$, solid contents in thickened sludge of 60,300 mg/L and SS removal efficiency of 99% were obtained through long period operating LAF in conditions of mixed sludge concentration of 14,400 mg/L, coagulant dosage of 27.6 mg/L, foaming agent addition of 4.0 mg/L and microbubble water injection ratio of 9.7%.

A study on the required energy of a thermal type desalination plant (증발식 해수담수화설비의 에너지 소모량에 관한 연구)

  • Song, Chi-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1094-1100
    • /
    • 2014
  • TEvaporator is key component in food, seawater distillation and waste water treatment system, which is basically to concentrate the raw liquid by evaporating the pure water under vacuum condition. The liquid concentration is performed through the membrane, electro-dialysis and evaporation. In this study, only the evaporating type was treated for evaluating the economic analysis with the various operating conditions. The results of this study showed that the performance of the OT-MSF desalination system is increased with decreasing the temperature difference between the neighboring evaporators, which means that the number of evaporators is increased, under the determined design conditions.

Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs) (과불화합물(PFCs) 가스 처리를 위한 고효율 열플라즈마 스크러버 기술 개발 동향)

  • Park, Hyun-Woo;Cha, Woo Byoung;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • POU (point of use) scrubbers were applied for the treatment of waste gases including PFCs (perfluorocompounds) exhausted from the CVD (chemical vapor deposition), etching, and cleaning processes of semiconductor and display manufacturing plant. The GWP (global warming potential) and atmosphere lifetime of PFCs are known to be a few thousands higher than that of $CO_2$, and extremely high temperature more than 3,000 K is required to thermally decompose PFCs. Therefore, POU gas scrubbers based on the thermal plasma technology were developed for the effective control of PFCs and industrial application of the technology. The thermal plasma technology encompasses the generation of powerful plasma via the optimization of the plasma torch, a highly stable power supply, and the matching technique between two components. In addition, the effective mixture of the high temperature plasma and waste gases was also necessary for the highly efficient abatement of PFCs. The purpose of this paper was to provide not only a useful technical information of the post-treatment process for the waste gas scrubbing but also a short perspective on R&D of POU plasma gas scrubbers.

A Study on the Optimization of District Heating and Cooling Facilities (지역냉난방사업의 설비 최적화에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.505-530
    • /
    • 2006
  • For the district heating and cooling business, it is required to install energy-saving facilities using energy from waste and land fill gases such as combined heat and power(CHP). The current issues that this business faces can be summarized as below: which facilities including CHP can be economically introduced and how much of their capacities should be. Most of such issues are clearly related to the optimal plant design of the district heating and cooling business, and the prices of energy services such as heating and cooling energy, and electricity. The purpose of this study is to establish linear program model of least cost function and to practice the empirical test on a assumed district heating and cooling business area. The model could choose the optimal type of energy-producing facilities among various kinds available such as CHP's, absorption chillers, the ice-storage system, etc. CHP with the flexible heat and power ratio is also in the set of available technologies. And the model show us the optimal ration of heat producing facilities between CHP and historical heat only boiler in the service area. Some implications of this study are summarized as below. Firms may utilize this model as a tool for the analysis of their optimal size of the facilities and operation. Also, the government may refer the results to regulate resonable size of business.

  • PDF

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF