• Title/Summary/Keyword: Waste liquid

Search Result 591, Processing Time 0.032 seconds

Density of Molten Salt Mixtures of Eutectic LiCl-KCl Containing UCl3, CeCl3, or LaCl3

  • Zhang, C.;Simpson, M.F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Densities of molten salt mixtures of eutectic LiCl-KCl with $UCl_3$, $CeCl_3$, or $LaCl_3$ at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For $LaCl_3$ and $CeCl_3$, the measured densities were significantly higher than those previously reported from Archimedes' method. In the case of $LiCl-KCl-UCl_3$, the data fit the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

Chemical Treatment for the Destruction of Aflatoxins in Laboratory Waste Water (실험실 폐수중 Aflatoxin 감소를 위한 화학적 처리에 관한 연구)

  • 김종규
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.52-56
    • /
    • 1992
  • The ability of chemicals, 10% sodium hypochlorite, 28% ammonium hydroxide, 5% sodium hydroxide, 5% sodium bicarbonate, 0.1% hydrochloric acid, 5% hydrogen peroxide, and 5% acetone, to destroy aflatoxins in laboratory waste water containing 3.26 ppb of B$_{1}$ 7.64 ppb of B$_{6}$3 ppb of G$_{1}$, and 11.39 ppb of G$_{2}$ with the total of 29.11 ppb was investigated. High performance liquid chromatograph (HPLC) was used for the separation and quantitation of aflatoxins. Treatment for 2 hours by the chemicals affected the destruction of aflatoxins and the most effective chemical was 10% sodium hypochlorite (p<0.05). Sodium hypochlorite concentrations more than 1% significantly reduced aflatoxin B$_{2}$, G$_{1}$, G$_{2}$ and total aflatoxins and more than 3% reduced B$_{1}$ (p<0.05). No further significant decreases were observed above the concentration of 5% for all 4 aflatoxins. Complete destruction of aflatoxins B$_{2}$, G_{1}$, and G$_{2}$ was achieved by 5% sodium hypochlorite at 48 hours and B$_{1}$ at 72 hours.

  • PDF

Isolation of a Marine Bacterium Capable of Biodegrading Poly(butylene succinate)

  • Lee, Sang Jun;Park, Eun Hee;Han, Yun Hee;Kim, Young Ok;Park, Seong Wook
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.1
    • /
    • pp.41-44
    • /
    • 2013
  • We developed a poly(butylene succinate) (PBS) indicator plate and isolated a marine bacterial colony capable of biodegrading PBS based on the appearance of a clear zone. Growth of the PBS-2 isolate was observed over 4 days of culture at $37^{\circ}C$ in PBS-tryptone basal liquid medium, but not in PBS-deprived control medium. The PBS-2 isolate was named Paenibacillus sp. PBS-2 based on 16S rDNA gene sequencing. The PBS-biodegrading marine bacterium isolated in this study will contribute to the effective management of PBS waste problems in marine environments.

Adsorption Study on the Radioactive Liquids by Korean Vermiculite (한국산(韓國産) Vermiculite에 의(依)한 방사성동위원소(放射性同位元素) 흡착연구(吸着硏究))

  • Moon, Suc-Hyong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.7 no.1
    • /
    • pp.51-54
    • /
    • 1973
  • The use of ion-exchange resins for the treatment of radioactive wastes has many advantages, but thes eare rather expensive as compared with the Korean vermiculite. The Korean vermiculite has slightly different chemical constituents from the ones produced in other countries, and its physical properties might be applicable to the management of radioactive waste, in a small nuclear installation. The decontaminating effect of Korean vermiculite for the low-level radioactive liquid was investigated. $^{106}Ru,\;^{90}Sr,\;and\;^{137}Cs$ were utilized for the experiments. The removal rates by Korean vermiculite were calculated for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ and the removal rates increased as the weight of vermiculite in the exchange column increased. The decontaminating constants, $K_d$ of the Korean vermiculite for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ were 2.7, 69.3 and 263ml/g respectively. Through the results of experiments, the application of Korean vermiculite column to the treatment of low-level radioactive waste is quite feasible.

  • PDF

Conceptual Design of Pretreatment Process for SIES Using Membrane Process (막분리 공정을 이용한 SIES 전처리설비 개념 설계)

  • 이상진;양호연;신상운
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.15-20
    • /
    • 2003
  • During operation process of SIES(Selective ion exchange system) at Kori Unit 2, it was impossible to remove radionuclides such as ion form and Ag-110m, etc., because activated carbon and ion exchange resin of this system are fouled easily by suspended solids and oils in liquid radwaste that was flowed in this system. In this study, an experiment to improve quality of water which was flowed in SIES was performed. and design data of Scale-up pretreatment process were secured. Also, each module design for Microfiltration and Nanofiltration unit of the pretreatment process for SIES was performed.

  • PDF

A Status of Tritium Processing Technologies (트리튬 처리기술 현황)

  • 안도희;김광락;백승우;이민수;임성팔;정흥석
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.172-179
    • /
    • 2003
  • Various type of tritium wastes can be produced from nuclear fuel cycle process satisfying non-proliferation, CANDU reactors, and nuclear industry. Activities of tritium processing in the world were surveyed to develope the processing technologies of tritium wastes. The tritium wastes were classified into gas phase, liquid phase, and organic phase. And the treatment techniques for the tritium wastes are analyzed. Development of tritium processing technologies is essential to finding public acceptance of radioactive wastes and forming a solid foundation to foster the growth of nuclear industry in Korea.

  • PDF

Optimal Design of Solvent Recovery Process with Dividing Wall Column for Film Making Process (분리벽형 증류탑을 적용한 필름공정의 폐용매 회수공정 최적설계)

  • Lee, Seung-Hyun;Zo, Moon-Shin;Lee, Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1209-1214
    • /
    • 2006
  • This paper presents an application of Dividing Wall Column(DWC) to the recovery of the waste solvent from the film making processes. The waste solvent feed contains MEK(Methyl-Ethyl-Ketone), Toluene, Cyclohexanone, and water. The commercial software $HYSYS^{TM}$ was used for rigorous simulation and analysis. Sensitivity analysis for several major design variables were carried out to achieve the optimal design of the process. Distribution of the internal vapor and liquid flows to the prefractionator and main sections is shown to be the most dominant design factor for energy saving efficiency in the DWC process. The simulation results also show that the solvent recovery process using the DWC significantly improves both the energy efficiency and the compactness of the solvent recovery process.

Recent Research Trend in Plastic Waste Upcycling via Hydrocracking Using Heterogeneous Catalysts (수소첨가를 통한 폐플라스틱 분해 기술 동향)

  • Ro, Insoo
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • 플라스틱은 가볍고 물성이 뛰어나며 가공이 용이하면서도 낮은 가격 때문에 우리의 실생활에서 매일 사용되고 있다. 동시에 썩지 않는 특성 탓에 폐플라스틱에 의한 환경오염의 문제가 심해짐에 따라 전 세계적으로 일회용 포장재 및 용기에 사용되는 플라스틱의 사용을 금지하는 규제 및 폐플라스틱을 재활용하려는 시도가 늘어나고 있다. 하지만 인류가 지난 수십 년간 생산한 플라스틱은 약 83억 톤이지만 이중 약 10%정도만 재활용 되었을 정도로 폐플라스틱의 재활용 비율은 미비하다. 특히, 최근 코로나 팬데믹으로 인해 택배 및 배달음식 주문량이 늘어남에 따라 플라스틱의 사용량이 급증하여 폐플라스틱의 재활용 필요성은 더욱더 커지고 있다. 본 기고문에서는 불균일 촉매를 이용한 수소첨가 폐플라스틱의 분해에 관한 최신 연구동향을 다루고자 한다. 안정적이고 반응성 및 선택성이 뛰어난 촉매 개발은 폐플라스틱의 효과적인 분해를 위해서 매우 중요하다.

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho Nam-Sun;Shin Dae-Hyun;Park Sou-Won;Lee Kyong-Hwan;Kim Kwang-Ho;Jeon Sang-Goo;Cho Bong-Gyu
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

STATUS OF PYROPROCESSING TECHNOLOGY DEVELOPMENT IN KOREA

  • Song, Kee-Chan;Lee, Han-Soo;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.131-144
    • /
    • 2010
  • The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology for recycling useful resources from spent fuel since 1997. The process includes pretreatment, electroreduction, electrorefining, electrowinning, and a waste salt treatment system. This paper briefly addresses unit processes and related innovative technologies. As for the electroreduction step, a stainless steel mesh basket was applied for adaption of granules of uranium oxide. This basket was designed for ready handling and transfer of feed material. A graphite cathode was used for the continuous collection of uranium dendrite in the electrorefining system. This enhances the throughput of the electrorefiner. A particular mesh type stirrer was designed to inhibit uranium spill-over at the liquid Cd crucible. A residual actinide recovery system was also tested to recover TRU tracer. In order to reduce the waste volume, a crystallization method is employed for Cs and Sr removal. Experiments on the unit processes were tested successfully, and based on the results, engineering-scale equipment has been designed for the PRIDE (PyRoprocess Integrated inactive DEmonstration facility).