DOI QR코드

DOI QR Code

STATUS OF PYROPROCESSING TECHNOLOGY DEVELOPMENT IN KOREA

  • Received : 2010.03.29
  • Published : 2010.04.30

Abstract

The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology for recycling useful resources from spent fuel since 1997. The process includes pretreatment, electroreduction, electrorefining, electrowinning, and a waste salt treatment system. This paper briefly addresses unit processes and related innovative technologies. As for the electroreduction step, a stainless steel mesh basket was applied for adaption of granules of uranium oxide. This basket was designed for ready handling and transfer of feed material. A graphite cathode was used for the continuous collection of uranium dendrite in the electrorefining system. This enhances the throughput of the electrorefiner. A particular mesh type stirrer was designed to inhibit uranium spill-over at the liquid Cd crucible. A residual actinide recovery system was also tested to recover TRU tracer. In order to reduce the waste volume, a crystallization method is employed for Cs and Sr removal. Experiments on the unit processes were tested successfully, and based on the results, engineering-scale equipment has been designed for the PRIDE (PyRoprocess Integrated inactive DEmonstration facility).

Keywords

References

  1. IAEA, International Status and Prospects of Nuclear Power, 2008
  2. IAEA, Spent Fuel Reprocessing Options, IAEA-TECDOC-1587, 2008
  3. E. J. KARELL and K. V. GOURISHANKAR, "Separation of Actinides from LWR Spent Fuel Using Molten Salt Based Electrochemical Process," Nuclear Technology, 136, 342 (2001).
  4. S. D. HERRMANN, S. X. LI, and M. F. SIMPSON, "Electrolytic Reduction of Spent Oxide Fuel - Bench-Scale Test Results," Proc. Global 2005, No. 488, Tsukuba, Japan, October 9-October 13, 2005.
  5. Y. Sakamura, M. Kurata, and T. Inoue, "Electrochemical Reduction of $UO_2$ in Molten $CaCl_2$ or LiCl", Journal of Electrochemical Society, 153(3), D31, 2006 https://doi.org/10.1149/1.2160430
  6. J. M. Hur, I. K. Choi, S. H. Cho, S. M. Jeong, C. S. Seo, "Preparation and Melting of Uranium from $U_3O_8$", Journal of Alloys and Compounds, 452, 23, 2008. https://doi.org/10.1016/j.jallcom.2006.11.210
  7. J. H. Lee, Y. H. Kang, S. C. Hwang, J. B. Shim, E. H. Kim and S. W. Park, "Application o f Graphite as a Cathode Material for Electrorefining of Uranium," Nuclear Technology, Vol.162, pp.135-143, 2008.
  8. J. H. Lee, Y. H. Kang, S. C. Hwang, H. S. Lee, E. H. Kim and S. W. Park, "Assessment of a High-throughput Electrorefining Concept for a Spent Metallic Nuclear Fuel-I: Computational Fluid Dynamics Analysis," Nuclear Technology, Vol.162, pp.107-116, 2008.
  9. J. H. Lee, K. H. Oh, Y. H. Kang, S. C. Hwang, H. S. Lee, J. B. Shim, E. H. Kim and S. W. Park, "Assessment of a High-throughput Electrorefining Concept for a Spent Metallic Nuclear Fuel-II: Electrohydrodynamic Analysis and Validation," Nuclear Technology, Vol.165, pp.370-379, 2009. https://doi.org/10.13182/NT09-A4108
  10. T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashi and M. Tokiwai, "An Experimental Study of Molten Salt Electrorefining of Uranium Using Solid Iron Cathode and Liquid Cadmium Cathode for Development of Pyrometallurgical Reprocessing", J. Nuclear Science and Technology, Vol.34, No.4, pp.384-393, 1997. https://doi.org/10.3327/jnst.34.384
  11. Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T.S. Storvick, C.L. Krueger, J.J. Roy, D.L. Grimmett, S.P. Fusselman and R.L. Gay, "Measurement of Standard Potentials of Actinides (U, Np, Pu, Am) in LiCl-KCl Eutectic Salt and Separation of Actinides from Rare Earths by Electrorefining", J. Alloys and Compounds, Vol.271-273, pp.592-596, 1998. https://doi.org/10.1016/S0925-8388(98)00166-2
  12. O. Shirai, H. Yamana and Y. Arai, "Electrochemical Behavior of Actinides and Actinide Nitrides in LiCl-KCl Eutectic Melts", J. Alloys and Compounds, Vol.408-412, pp.1267-1273, 2006. https://doi.org/10.1016/j.jallcom.2005.04.119
  13. S.X. Li, S.D. Hermann and M.F. Simpson, "Actinide Recovery Experiments with Bench-Scale Liquid Cadmium Cathode in Real Fission Product-Laden Molten Salt", Nuclear Technology, Vol.165, pp.190-199, 2008.
  14. K. Uozumi, M. Iizuka, T. Kato, T. Inoue, O. Shirai, T. Iwai and Y. Arai, "Electrochemical Behaviors of Uranium and Plutonium at Simultaneous Recoveries into Liquid Cadmium Cathode", J. Nuclear Materials, Vol.325, pp.34-43, 2004. https://doi.org/10.1016/j.jnucmat.2003.10.010
  15. T. Koyama, M. Iizuka, N. Kondo, R. Fujita and H. Tanaka, "Electrodeposition of Uranium in Stirred Liquid Cadmium Cathode", J. Nuclear Materials, Vol.247, pp.227-231, 1997. https://doi.org/10.1016/S0022-3115(97)00100-1
  16. H.C. Eun, H. C. Yang, Y. J. Cho, H.S. Park and I. T. Kim, "Separation of Pure LiCl-KCl Eutectic Salt and Rare Earth Precipitates by Vacuum Distillation", J. Nuc. Sci. Technol. Vol.44, pp.1295-1300, 2007. https://doi.org/10.3327/jnst.44.1295
  17. E. Garcia, V. R. Dole, J. A. McNeese, W. G. Griego, "Salt Distillation", Los Alamos Science, Vol.26, pp. 449-450, 2000.
  18. J.B. Shim, Y.J. You, S.W. Kwon, S.H. Kim, S.W. Paek, K.R. Kim, J.G. Kim, H. Chung, and D.H. Ahn, "Thermodynamic and Experimental Approaches for an Effective Recovery of Actinides from a Spent LiCl-KCl Salt", Proceedings of the 2008 International Pyroprocessing Research Conference, Aug. 24-27, 2008, Jeju Island, Republic of Korea (2008).
  19. K. Kinoshita, T. Inoue, S.P. Fusselman, D.L. Grimmett, J.J. Roy, R.L. Gay, C.L. Krueger, C.R. Nabelek, and T.S. Storvick, "Separation of Uranium and Transuranic Elements from Rare Earth Elements by Means of Multistage Extraction in LiCl-KCl/Bi System", J. Nucl. Sci. Techol., 36, 189 (1999). https://doi.org/10.3327/jnst.36.189
  20. J.B. Shim, K.S. Han, S.H. Kim, S.W. Paek, S.W. Kwon, J.G. Kim, K.R. Kim, H. Chung, H.S. Lee, and D.H. Ahn, "Effects of CdCl2 on the Residual Actinides Recovery (RAR) System of a Spent LiCl-KCl Salt", Proceedings of Global 2009 Conference, Sep. 6-11, 2009, Paris, France (2009).
  21. ANSYS CFX-12.0 Solver 2008 (Cannonsburg, USA/ANSYS:www.ansys.com)
  22. E.H. Kim, G.I. Park, Y.Z. Cho, H.C. Yang, "A new approach to minimize pyroprocessing waste salts through a series of fission product removal process", Nucl. Technol., 162, 208 (2008).
  23. M.F. Simpson, T.S. Yoo, R.W. Benedict, S. Phongikaroon, S. Frank, P. Sachdev, K. Hartman, "Strategic Minimization of High Level Waste From Pyroprocessing of Spent Nuclear Fuel," Proc. GLOBAL2007, 1394 (2007)
  24. Y.Z. Cho, S.K. Byun, H.S. Lee and I.T. Kim, "Concentration of Cs and Sr Elements Involved in a LiCl Waste Salt by Melt Crystallization Process," Proc. IPRC 2008, 121(2008)
  25. Y.Z. Cho, H.C. Yang, G.H. Park, H.S. Lee and I.T. Kim, "Treatment of a Waste Salt Delivered from an Electrorefining Process by an Oxidative Precipitation of the Rare Earth Elements," Journal of Nuclear Materials, 384, 256 (2009). https://doi.org/10.1016/j.jnucmat.2008.11.020
  26. H.C. Eun, H.C. Yang, H.S. Lee and I.T. Kim, "Distillation and Condensation of LiCl-KCl Eutectic Salts for a Separation of Pure Salts form Salt Wastes from an Electrorefining Process", Journal of Nuclear Materials, 395, 58 (2009). https://doi.org/10.1016/j.jnucmat.2009.09.016
  27. H.S. Park, I.T. Kim, Y.Z. Cho, H.C. Eun and H.S. Lee, "Stabilization/Solidification of Radioactive Salt Waste by Using $xSiO_2-yAl_2O_3-zP_2O_5(SAP)$ Material at Molten Salt State", Environ. Sci. Technol., 153(3), 42, 9357 (2008).
  28. I.T. Kim, H.S. Park, S.W. Park and E.H. Kim, "Alternative Technology for the Treatment of Waste LiCl Salt by Using Gelation with Si-P-Al Material System and a Subsequent Thermal Conditioning Method", Nuclear Technology, 162, 219 (2008). https://doi.org/10.13182/NT08-A3950

Cited by

  1. Corrosion Evaluation for Advanced Fuel Cycle Facilities vol.11, pp.6, 2012, https://doi.org/10.14773/cst.2012.11.6.213
  2. Determination of the Plutonium Mass and Curium Ratio of Spent Fuel Assemblies for Input Nuclear Material Accountancy of Pyroprocessing, and Analysis of Their Errors vol.179, pp.2, 2012, https://doi.org/10.13182/NT11-77
  3. Study on a separation method of radionuclides (Ba, Sr) from LiCl salt wastes generated from the electroreduction process of spent nuclear fuel vol.292, pp.2, 2012, https://doi.org/10.1007/s10967-011-1438-7
  4. Simulation of radioactivation and chlorination reaction behavior for Zircaloy-4 and Zirlo cladding hull wastes vol.292, pp.3, 2012, https://doi.org/10.1007/s10967-011-1581-1
  5. Demonstration of Zr Recovery from 50 g Scale Zircaloy-4 Cladding Hulls using a Chlorination Method vol.11, pp.1, 2013, https://doi.org/10.7733/jkrws.2013.11.1.55
  6. Chlorination Reaction Behavior of Zircaloy-4 Hulls: A Preliminary Study on the Effect of the Oxidation Process on the Reaction Rate vol.11, pp.1, 2013, https://doi.org/10.7733/jkrws.2013.11.1.69
  7. O Molten Salt vol.16, pp.3, 2013, https://doi.org/10.5229/JKES.2013.16.3.138
  8. Projected Salt Waste Production from a Commercial Pyroprocessing Facility vol.2013, pp.1687-6083, 2013, https://doi.org/10.1155/2013/945858
  9. Distillation of LiCl from the LiCl–Li2O molten salt of the electrolytic reduction process vol.295, pp.2, 2013, https://doi.org/10.1007/s10967-012-1997-2
  10. Development of an anode structure consisting of graphite tubes and a SiC shroud for the electrowinning process in molten salt vol.295, pp.3, 2013, https://doi.org/10.1007/s10967-012-2103-5
  11. Study on Oxidation or Reduction Behavior of Cs-Te-O System with Gas Conditions of Voloxidation Process vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.700
  12. A Review on the Application of Ionic Liquids for the Radioactive Waste Processing vol.12, pp.1, 2014, https://doi.org/10.7733/jnfcwt.2014.12.1.45
  13. Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis vol.12, pp.1, 2014, https://doi.org/10.7733/jnfcwt.2014.12.1.7
  14. Electrochemical Reduction Process for Pyroprocessing vol.52, pp.3, 2014, https://doi.org/10.9713/kcer.2014.52.3.279
  15. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility vol.64, pp.9, 2014, https://doi.org/10.3938/jkps.64.1293
  16. The Effects of Cross-Section Openings on the Chlorination Reaction Rate of ZIRLO Cladding Hulls vol.13, pp.3, 2015, https://doi.org/10.7733/jnfcwt.2015.13.3.211
  17. A Preliminary Study on the Feasibility of Copper Mesh as an Off-Gas Iodine Capturing Medium for Pyroprocessing vol.13, pp.3, 2015, https://doi.org/10.7733/jnfcwt.2015.13.3.235
  18. O-LiCl Molten Salt using Porous Anode Shroud vol.18, pp.3, 2015, https://doi.org/10.5229/JKES.2015.18.3.121
  19. Electrolytic Reduction Characteristics of Titanium Oxides in a LiCl-Li2O Molten Salt vol.18, pp.4, 2015, https://doi.org/10.5229/JKES.2015.18.4.156
  20. Evaporation of CsCl, BaCl2, and SrCl2 from the LiCl–Li2O molten salt of the electrolytic reduction process vol.303, pp.1, 2015, https://doi.org/10.1007/s10967-014-3330-8
  21. Hot corrosion behaviour of Inconel 625 weldments in molten lithium salt vol.50, pp.8, 2015, https://doi.org/10.1179/1743278215Y.0000000015
  22. Thermal properties of a fiber-optic radiation sensor for measuring gamma-rays in high-temperature conditions vol.66, pp.1, 2015, https://doi.org/10.3938/jkps.66.46
  23. Chlorination reaction kinetics of CsI under cladding hull waste treatment condition: a TGA study vol.307, pp.1, 2016, https://doi.org/10.1007/s10967-015-4096-3
  24. Introduction of MKZP (Min Ku Zirconium Process) as an alternative to pyroprocessing for used nuclear fuel management vol.308, pp.2, 2016, https://doi.org/10.1007/s10967-015-4618-z
  25. Distillation characteristics of LiCl–Li2O electrolyte for UO2 electrolytic reduction process vol.310, pp.3, 2016, https://doi.org/10.1007/s10967-016-4936-9
  26. Electrolytic reduction rate of porous UO2 pellets vol.33, pp.7, 2016, https://doi.org/10.1007/s11814-016-0077-7
  27. Monte Carlo simulations of safeguards neutron counter for oxide reduction process feed material vol.69, pp.7, 2016, https://doi.org/10.3938/jkps.69.1175
  28. Equipment Layout Improvement for Large-Scale Hot Cell Facility Logistics vol.2017, pp.1687-6083, 2017, https://doi.org/10.1155/2017/4585120
  29. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation vol.314, pp.1, 2017, https://doi.org/10.1007/s10967-017-5404-x
  30. Injection casting of U–Zr and U–Zr–RE fuel slugs and their characterization vol.54, pp.6, 2017, https://doi.org/10.1080/00223131.2017.1299049
  31. Modeling of electric and thermal fields in an electrolyzer with liquid-metal electrodes vol.58, pp.1, 2017, https://doi.org/10.3103/S1067821217010047
  32. molten salt for pyrochemical reprocessing application pp.1743-2782, 2017, https://doi.org/10.1080/1478422X.2017.1396410
  33. O-Li vol.55, pp.1, 2018, https://doi.org/10.1080/00223131.2017.1383214
  34. Cyclic Voltammograms in LiCl-KCl Electrolyte vol.161, pp.4, 2014, https://doi.org/10.1149/2.033404jes
  35. A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode vol.15, pp.4, 2017, https://doi.org/10.7733/jnfcwt.2017.15.4.313
  36. Scaling Up Fabrication of UO2 Porous Pellet With a Simulated Spent Fuel Composition vol.15, pp.4, 2017, https://doi.org/10.7733/jnfcwt.2017.15.4.343
  37. Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process vol.16, pp.3, 2018, https://doi.org/10.7733/jnfcwt.2018.16.3.291
  38. A Study on the Droplet Formation of Liquid Metal in Water-Mercury System as a Surrogate of Molten Salt-Liquid Metal System at Room Temperature vol.16, pp.2, 2018, https://doi.org/10.7733/jnfcwt.2018.16.2.165
  39. Quantitative analysis of barium and strontium in simulated oxide fuel during electrolytic reduction and salt distillation vol.317, pp.2, 2018, https://doi.org/10.1007/s10967-018-5960-8
  40. Constituent analysis of metal and metal oxide in reduced SIMFuel using bromine-ethyl acetate vol.316, pp.3, 2018, https://doi.org/10.1007/s10967-018-5841-1
  41. Electrochemical behavior of chalcogen and halogen fission products in pyro-electrochemical reduction process vol.48, pp.6, 2018, https://doi.org/10.1007/s10800-018-1153-y
  42. Uranium recovery with zinc distillation from a liquid zinc cathode for pyroprocessing vol.316, pp.2, 2018, https://doi.org/10.1007/s10967-018-5789-1
  43. Selective morphological analysis of cerium metal in electrodeposit recovered from molten LiCl-KCl eutectic by radiography and computed tomography vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-38022-3