Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2017.15.2.117

Density of Molten Salt Mixtures of Eutectic LiCl-KCl Containing UCl3, CeCl3, or LaCl3  

Zhang, C. (Department of Metallurgical Engineering, University of Utah)
Simpson, M.F. (Department of Metallurgical Engineering, University of Utah)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.15, no.2, 2017 , pp. 117-124 More about this Journal
Abstract
Densities of molten salt mixtures of eutectic LiCl-KCl with $UCl_3$, $CeCl_3$, or $LaCl_3$ at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For $LaCl_3$ and $CeCl_3$, the measured densities were significantly higher than those previously reported from Archimedes' method. In the case of $LiCl-KCl-UCl_3$, the data fit the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.
Keywords
Pyroprocessing; Molten salt; Density; Fuel cycle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Inoue and L. Koch, "Development of Pyroprocessing and Its Future Direction", Nucl. Eng. Technol., 40(3), 183-190 (2008).   DOI
2 R.D. Mariani, D.L. Porter, S.L. Hayes, and J.R. Kennedy, "Metallic Fuels: The EBR-II Legacy and Recent Advances", Procedia Chem., 7, 513-520 (2012).   DOI
3 D.H. Kim, S.E. Bae, T.H. Park, J.Y. Kim, C.W. Lee, and K. Song, "Real-Time Monitoring of Metal Ion Concentration in LiCl-KCl Melt Using Electrochemical Techniques", Microchem. J., 114(0), 261-265 (2014).   DOI
4 Z.H. Wang, D. Rappleye, and M.F. Simpson, "Voltammetric Analysis of Mixtures of Molten Eutectic LiCl-KCl Containing LaCl3 and ThCl4 for Concentration and Diffusion Coefficient Measurement." Electrochimica Acta 191 (2016): 29-43.   DOI
5 D. Rappleye, S.M. Jeong, and M. Simpson, "Electroanalytical Measurements of Binary-Analyte Mixtures in Molten LiCl-KCl Eutectic: Gadolinium(III)- and Lanthanum(III)-Chloride." Journal of the Electrochemical Society 163.9 (2016): B507-516.   DOI
6 R.O. Hoover, D. Yoon, and S. Phongikaroon, "Effects of Temperature, Concentration, and Uranium Chloride Mixture on Zirconium Electrochemical Studies in LiCl[sbnd]KCl Eutectic Salt." Journal of Nuclear Materials 476 (2016): 179-87.   DOI
7 D. Yoon and S. Phongikaroon, "Electrochemical Properties and Analyses of $CeCl_3$ in LiCl-KCl Eutectic Salt." Journal of the Electrochemical Society 162.10 (2015): E237-243.   DOI
8 E. Van Artsdalen and I. Yaffe, "Electrical Conductance and Density of Molten Salt Systems: KCl-LiCl, KCl-NaCl and KCl-KI", J. Phys. Chem., 59(1953), 118-127 (1955).   DOI
9 R.D. Mariani and D. Vaden, "Modeled Salt Density for Nuclear Material Estimation in the Treatment of Spent Nuclear Fuel", J. Nucl. Mater., 404(1), 25-32. (2010).   DOI
10 K. Sridharan, T. Allen, M. Anderson, M. Simpson, L. Olson, M. Mohammadian, S. Martin, J. Sager, and A. Boyle, "Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation", US DOE, NEUP Final Report Project No. 09-780 (2012).
11 H. Lambert, Study of a Double Bubbler for Material Balance in Liquids Training Report, Idaho National Laboratory Report, INL/EXT-13-29609 (2013).
12 C.Y. Ho and R.E. Taylor, Thermal Expansion of Solids, ASM international, Ohio (1998).
13 G.J. Janz, Molten Salts Handbook, Academic Press, New York (1967).
14 V.N. Desyatnik, S.F. Katyshev, S.P. Raspopin and Y.F. Chervinskij, "Density, Surface Tension and Viscosity of Uranium Trichloride-Sodium Chloride Melting", At. Ehnergiya., 39(1), 70-72 (1975).