Recent Research Trend in Plastic Waste Upcycling via Hydrocracking Using Heterogeneous Catalysts

수소첨가를 통한 폐플라스틱 분해 기술 동향

  • Ro, Insoo (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 노인수 (서울과학기술대학교 화공생명공학과)
  • Published : 2021.04.30

Abstract

플라스틱은 가볍고 물성이 뛰어나며 가공이 용이하면서도 낮은 가격 때문에 우리의 실생활에서 매일 사용되고 있다. 동시에 썩지 않는 특성 탓에 폐플라스틱에 의한 환경오염의 문제가 심해짐에 따라 전 세계적으로 일회용 포장재 및 용기에 사용되는 플라스틱의 사용을 금지하는 규제 및 폐플라스틱을 재활용하려는 시도가 늘어나고 있다. 하지만 인류가 지난 수십 년간 생산한 플라스틱은 약 83억 톤이지만 이중 약 10%정도만 재활용 되었을 정도로 폐플라스틱의 재활용 비율은 미비하다. 특히, 최근 코로나 팬데믹으로 인해 택배 및 배달음식 주문량이 늘어남에 따라 플라스틱의 사용량이 급증하여 폐플라스틱의 재활용 필요성은 더욱더 커지고 있다. 본 기고문에서는 불균일 촉매를 이용한 수소첨가 폐플라스틱의 분해에 관한 최신 연구동향을 다루고자 한다. 안정적이고 반응성 및 선택성이 뛰어난 촉매 개발은 폐플라스틱의 효과적인 분해를 위해서 매우 중요하다.

Keywords

References

  1. 이윤정, 김경신, 육상기인 해양 플라스틱 예방 정책을 강화해야, KMI (한국해양수산개발원) 동향분석, 147, 1-24 (2019).
  2. 오현영, 세상을 야금야금 잡아먹는 '무서운 폐기물', 조선일보, 10월 20일 (2017).
  3. GS칼텍스, 단 14%만 재활용되는 폐플라스틱, 분리수거만이 답이 아니라면?, GS칼텍스 미디어허브, 6월 30일 (2020).
  4. T. Hundertmark, M. Mayer, C. McNally, T. J. Simons, and C. Witte, Modeling a virtuous circle of plastics recycling worldwide (2017).
  5. 김유림, 고동완, HMR소비로 곳곳에 플라스틱 쓰레기 산, 수거업체는 "더 못 하겠다", 동아일보, 10월 3일 (2020).
  6. A. J. Martin, C. Mondelli, S. D. Jaydev, and J. Perez-Ramirez, Catalytic processing of plastic waste on the rise, Chem., 7, 1-47 (2021). https://doi.org/10.1159/000220099
  7. 신희덕, 김종헌, 폐플라스틱의 처리.재자원화 최신동향, Resour. Recycl., 4, 3-11 (2014).
  8. D. Munir, M. F. Irfan, and M. R. Usmana. Hydrocracking of virgin and waste plastics: A detailed review, Renew. Sust. Energ. Rev., 90, 490-515 (2018). https://doi.org/10.1016/j.rser.2018.03.034
  9. V. L. Mangesh, T. Perumal, S. Subramanian, and S. Padmanabhan, Clean energy from plastic: Production of hydroprocessed waste polypropylene pyrolysis oil utilizing a Ni-Mo/laponite catalyst, Energy Fuels, 34, 8824-8836 (2020). https://doi.org/10.1021/acs.energyfuels.0c01051
  10. D. P. Serrano, J. M. Escola, L. Briones, and M. Arroyo, Hydroprocessing of the LDPE thermal cracking oil into transportation fuels over Pd supported on hierarchical ZSM-5 catalyst, Fuel, 206, 190-198 (2016). https://doi.org/10.1016/j.fuel.2017.06.003
  11. D. P. Serrano, J. M. Escola, L. Briones, S. Medina, and A. Martinez, Hydroreforming of the oils from LDPE thermal cracking over Ni-Ru and Ru supported over hierarchical beta zeolite, Fuel, 144, 287-294 (2015). https://doi.org/10.1016/j.fuel.2014.12.040
  12. M. Utami, K. Wijaya, and W. Trisunaryanti, Pt-promoted sulfated zirconia as catalyst for hydrocracking of LDPE plastic waste into liquid fuels, Mater. Chem. Phys., 213, 548-555 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.055
  13. J. M. Escola, D. P. Serrano, J. Aguado, and L. Briones, Hydroreforming of the LDPE thermal cracking oil over hierarchical Ni/beta catalysts with different Ni particle size distributions, Ind. Eng. Chem. Res., 54, 6660-6668 (2015). https://doi.org/10.1021/acs.iecr.5b01160
  14. D. P. Serrano, J. M. Escola, L. Briones, and M. Arroyo, Hydroprocessing of the LDPE thermal cracking oil into transportation fuels over Pd supported on hierarchical ZSM-5 catalyst, Fuel, 206, 190-198 (2017). https://doi.org/10.1016/j.fuel.2017.06.003
  15. J. M. Escola, J. Aguado, D. P. Serrano, A. Garcia, A. Peral, L. Briones, R. Calvo, and E. Fernandez, Catalytic hydroreforming of the polyethylene thermal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates, Appl. Catal. B., 106, 405-415 (2011). https://doi.org/10.1016/j.apcatb.2011.05.048
  16. K. R. Venkatesh, J. Hu, W. Wang, G. D. Holder, J. W. Tierney, and I. Wender, Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified zirconium oxides, Energy Fuels, 10, 1163-1170 (1996). https://doi.org/10.1021/ef960049j
  17. W. Ding, J. Liang, and L. L. Anderson, Hydrocracking and hydroisomerization of high-density polyethylene and waste plastic over zeolite and silica-alumina-supported Ni and Ni-Mo sulfides, Energy & Fuels, 11, 1219-1224 (1997). https://doi.org/10.1021/ef970051q
  18. S. Karagoz, J. Yanik, S. Ucuar, and C. Song, Catalytic coprocessing of low-density polyethylene with VGO using metal supported on activated carbon, Energy & Fuels, 16, 1301-1308 (2002). https://doi.org/10.1021/ef020064q
  19. A. B. Jumah, V. Anbumuthu, A. A. Tedstone, and A. A. Garforth, Catalyzing the hydrocracking of low density polyethylene, Ind. Eng. Chem. Res., 58, 20601-20609 (2019). https://doi.org/10.1021/acs.iecr.9b04263
  20. G. Celik, R. M. Kennedy, R. A. Hackler, M. Ferrando, A. Tennakoon, S. Patnaik, A. M. LaPointe, S. C. Ammal, A. Heyden, F. Perras, M. Pruski, S. L. Scott, K. R. Poeppelmeier, A. D. Sadow, and M. Delferro, Upcycling single-use polyethylene into high-quality liquid products, ACS Cent. Sci., 5, 1795-1803 (2019). https://doi.org/10.1021/acscentsci.9b00722
  21. A. Tennakoon, X. Wu, A. L. Paterson, S. Patnaik, Y. Pei, A. M. LaPointe, S. C. Ammal, R. A. Hackler, A. Heyden, I. I. Slowing, G. W. Coates, M. Delferro, B. Peters, W. Huang, A. D. Sadow, and F. A. Perras, Catalytic upcycling of high-density polyethylene via a processive mechanism, Nat. Catal., 3, 893-901 (2020). https://doi.org/10.1038/s41929-020-00519-4
  22. Y. Nakajia, M. Tamura, S. Miyaoka, S. Kumagai, M. Tanji, Y. Nakagawa, T. Yoshioka, and K. Tomishige, Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes, Appl. Cat. B, 285, 119805 (2021). https://doi.org/10.1016/j.apcatb.2020.119805
  23. J. E. Rorrer, G. T. Beckham, and Y. RomanLeshkov, Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions, JACS Au, 1, 8-12 (2021). https://doi.org/10.1021/jacsau.0c00041
  24. F. Zhang, M. Zeng, D. Yappert, J. Sun, Y. Lee, A. LePointe, B. Peter, B. M. M. Abu-Omar, and S. L. Scott, Polyethylene upcycling to long-chain alkylaromatics by a tandem hydrogenolysis/aromatics, Science, 370, 437-441 (2020). https://doi.org/10.1126/science.abc5441