• 제목/요약/키워드: Warm area

검색결과 575건 처리시간 0.032초

Agricultural Geography of Rice Culture in California (미국 캘리포니아주(州)의 벼농사에 관한 농업지리학적 연구)

  • Lee, Jeon;Huh, Moo-Yul
    • Journal of the Korean association of regional geographers
    • /
    • 제2권1호
    • /
    • pp.51-67
    • /
    • 1996
  • There are three main rice-growing regions in the United States: the prairie region along the Mississippi River Valley in eastern Arkansas; the Gulf Coast prairie region in southwestern Louisiana and southeastern Texas; and the Central Valley of California. The Central Valley of California is producing about 23% of the US rice(Fig. 1). In California. most of the crop has been produced in the Colusa, Sutter, Butte, Glenn Counties of the Sacramento Valley since 1912, when rice was commercially grown for the first time in the state(Fig. 2). Roughly speaking, the average annual area sown to rice in California is about 300,000 acres to 400,000 acres during the last forty years(Fig. 3). California rice is grown under a Mediterranean climate characterized by warm, dry, clear days, and a long growing season favorable to high photosynthetic rates and high rice yields. The average rice yield per acre is probably higher in California than in any other rice-growing regions of the world(Fig. 4). A dependable supply of irrigation water must be available for a successful rice culture. Most of the irrigation water for California rice comes from the winter rain and snow-fed reservoir of the Sierra Nevada mountain ranges. Less than 10 percent of rice irrigation water is pumped from wells in areas where surface water is not sufficient. It is also essential to have good surface drainage if maximum yields are to be produced. Rice production in California is highly mechanized, requiring only about four hours of labor per acre. Mechanization of rice culture in California includes laser-leveler technology, large tractors, self-propelled combines for harvesting, and aircraft for seeding, pest control, and some fertilization. The principal varieties grown in California are medium-grain japonica types with origins from the cooler rice climates of the northern latitudes (Table 1). Long-grain varieties grown in the American South are not well adapted to California's cooler environment. Nearly all the rice grown recently in California are improved into semidwarf varieties. Choice of variety depends on environment, planting date, quality desired, marketing, and harvesting scheduling. The Rice Experiment Station at Biggs is owned, financed, and administered by the rice industry. The station was established in 1912, as a direct result of the foresight and effort of Charles Edward Chambliss of the United States Department of Agriculture. Now, The station's major effort is the development of improved rice varieties for California.

  • PDF

Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula (대암산 고층습원의 환경변천)

  • Yoshioka, Takahito;Kang, Sang-Joon
    • Korean Journal of Ecology and Environment
    • /
    • 제38권1호통권110호
    • /
    • pp.45-53
    • /
    • 2005
  • The environmental change of Yong-nup in Mt. Dae-Am, which is located at the northern part of Kangwon-Do, Korea, was assesed with peat sedimentary carbon and nitrogen isotope analysis. The surface layer of the peat (0 ${\sim}$ 5 cm) was 190 year BP, and the middle layers (30 ${\sim}$ 35 cm and 50 ${\sim}$ 55 cm) were 870 year BP and 1900 year BP, respectively. Bulk sedimentation rate was estimated to be about 0.4 mm $year^{-1}$ for 0 cm to 30 cm and 0.15 mm $year^{-1}$ for 35 cm to 50 cm. The $^{14}C$ age of the bottom sediment (75 ${\sim}$ 80 cm) collected and measured in this study was about 1900 year BP, although it was measured that the $^{14}C$ of the lowest bottom sediment in Yong-nup was 4105 ${\pm}$ 175 year BP (GX-23200). Since the $^{14}C$ ages for 50 ${\sim}$ 55 cm and 75 ${\sim}$ 80 cm layers were almost the same as 1890 ${\pm}$ 80 fear BP (NUTA 5364) and 1850 ${\pm}$ 90 year BP (NUTA 5462), respectively, we have estimated that the deep layers (55 ${\sim}$ 80 cm) in the high moor were the original forest soil. The low organic C and N contents in the deeper layers supported the inference. The sediment of 50 ${\sim}$ 55 cm layer contains much sandy material and showed very low organic content, suggesting the erosion (flooding) from the surrounding area. In this context, the Yong-nup, high moor, of Mt. Dae-Am, might have developed to the sampling site at about 1900 year BP. The ${\delta}^{13}C$ values of organic carbon and the ${\delta}^{15}N$ values of total nitrogen in the peat sediments fluctuated with the depths. The profile of ${\delta}^{13}C$ may indicate that the Yong-nup of Mt. Dae-Am have experienced the dry-wet and cool-warm period cycles during the development of the high moor. The ${\delta}^{15}N$ may indicate that the nitrogen cycling in the Yong-nup have changed from the closed (regeneration depending) system to the open (rain $NO_3\;^-$ and $N_2$ fixation depending) system during the development of the high moor.

The Subjective Estimation on the Ensemble and Comfort of Workers Wearing winter Uniform in Taegu (대구지역 동계 제복 근무자의 피복 착의 앙상블과 쾌적성의 주관적 평가)

  • Ryu, Duck-Hwan;Lee, Uk-Ja;Kim, Seong-Jin;Song, Min-Kyu;Cho, Ji-Hyun;Jung, Meung-Sun
    • Fashion & Textile Research Journal
    • /
    • 제2권3호
    • /
    • pp.253-264
    • /
    • 2000
  • The purpose of this study was to examine the thermal comfort characteristics of the garments for school, textile and bank worker's uniform. The garments selected for this study were frequently used in Taegu area in terms of design and material used for making garments by the survey for the study The human subject tests were performed to determine the thermal comfort characteristics of garments including thermal, humidity, and wearing sensation and the data were analysed statistically. The results of the study were as follows: 1. According to the result of the survey jacket was mostly used as a school uniform for both male and female high school students. The survey showed that 93% of male students wore 'neck T-shirts' and dimensional fitness for the school uniform got suitable at 2~3 grade high school students. In terms of human subject tests, most students rated 'uncomfortable' in wearing sensation of their school uniform. One of this reason was due to the humidity sensation and air velocity sensation. Level of significance of the thermal sensation for gender difference was higher in hands and feet of the subjects than in chest and thigh of them. 2. According to the result of the survey jacket with zipper was mostly used as a textile worker's uniform. The result of the survey indicated that some textile workers are wearing their inner wear (38.7% for upper and 46.6% for lower). In the human subject tests, about 50% of subjects rated 'comfortable to slightly comfortable' for wearing sensation of the textile worker's uniform. It showed that the female subjects of the humidity sensation was rated higher than the male subjects of the humidity sensation, while the male subjects of the thermal sensation was rated higher than the female subjects of the thermal sensation. There was a closer correlation with the subjective thermal sensation for textile worker's uniform in center parts of the subjects such as back and waist than exposed parts. 3. The result of the survey showed that 70% and 23% of the female banker uniform were blouse and jacket, respectively and 75% and 25% of the male banker uniform were jacket and T-shirt, respectively. All interviewee rated trousers and skirts that were used for their lower. 4. The result indicated that 50% male and 67.7% female subjects for the banker uniform rated 'slightly comfortable for the comfort' sensation. 50% male subjects rated 'neutral' and about 50% female subjects rated 'slightly warm to neutral' for the thermal sensation. In addition, The result showed that 75% male subjects for both upper and lower rated 'neutral' for the humidity sensation and also 75% female subjects rated 'neutral to slightly dry'. Thus, there was no significant different between gender. 5. In the thermal sensation of the subjects for the banker's uniform by parts, 50% subjects rated 'neutral' for their body parts, including head, neck, back, waist, hip, lower arm, and thigh. The extremely cold parts were hands and feet for both male and female subjects.

  • PDF

Vegetation of Jangdo Island (장도의 식생)

  • Choi, Byoung-Ki;Kim, Jong-Won;Kim, Seong-Yeol;Lim, Jeong-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • 제26권4호
    • /
    • pp.512-527
    • /
    • 2012
  • Jangdo Island (area $1.54km^2$) located in the western end of Dadohae Haesang National Park has been recognized as an prominent ecoregion possessing high moor and national biodiversity hotspot. In terms of the Z$\ddot{u}$rich-Montpellier School's phytosociology, we investigate the diversity of plant communities on the island and reevaluate the Jangdo wetland designated as Ramsar site. Ten physiognomic types of the Jangdo's vegetation were classified into 22 syntaxa (3 associations, 15 communities and 4 subcommunities). Jangdo wetland was actually denominated as 'eutrophic wetland' by Pharagmitetea and Orizetea rather than 'high moor'. Nevertheless, existence value of the Jangdo wetland is evaluated very high as a stepping stone for migratory birds and even plant dispersions. A new site of the northernmost distribution of Arachniodo-Castanopsietum sieboldii, which is a kind of cold-resistant phytocoenosis among the Camellietea japonicae of the warm-temperate broad-leaved forests, was described. Hosta yingeri-Carpinus turczaninovii var. coreana community and Carex wahuensis var. robusta-Juniperus chinensis var. procumbens community were described specifically as an endemic and an edaphic vegetation type, respectively. The unique Jangdo's vegetation reflects regional environmental conditions such as much higher frequency of frost-free days and the highest number of annual average foggy days in Korea and a well-developed aquifer in the depressed basin formed by differential erosion. We identified that human interventions (pasture, logging, forest fire, cultivation, etc.) has been involved intensively on every vegetation types, even though a rugged and inaccessible topography of the island. Particularly the Jangdo wetland has been recently threatened by fundamental distortion on hydrological system. We request an immediate establishment of the conservation prescription manual.

Wind-and Rain-induced Variations of Water Column Structures and Dispersal Pattern of Suspended Particulate Matter (SPM) in Marian Cove, the South Shetland Islands, West Antarctica during the Austral Summer 2000 (서남극 남 쉐틀랜드 군도 마리안 소만에서 바람 및 강수에 의한 여름철 수층 구조의 변화와 부유물질 분산)

  • 유규철;윤호일;오재경;강천윤;김예동;배성호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제8권4호
    • /
    • pp.357-368
    • /
    • 2003
  • Time-series CTDT (Conductivity/Temperature/Depth/Transmissivity) were obtained at one point near tidewater glacier of Marian Cove (King George Islands, Antarctica) to present water column properties and SPM (suspended particulate matter) dispersal pattern in relation with tide, current, meteorological data, and SPM concentration. Four layers were divided from the water column characteristics measured in the interval of an hour for about 2 days: 1) cold, fresh, and turbid surface mixed layer between 0-20 m in water depth, 2) warm, saline, and relatively clean Maxwell Bay inflow between 20-40 m in water depth, 3) turbid/cold tongue of subglacial discharges compared with the ambient waters between 40-70 m in water depth, and 4) cold, saline, and clean bottom water beneath 70 m in water depth. Surface plume, turbid freshwater at coastal/cliff area in late summer (early February), had the characteristic temperature and SPM concentration according to morphology, glacial condition, and composition of sediments. The restrict dispersion only over the input source of meltwater discharges was due to calm wether condition. Due to strong wind-induced surface turbulence, fresh and turbid surface plume, englacial upwelling cold water, glacier-contact meltwater, and Maxwell Bay inflow was mixing at ice-proximal zone and the consequent mixed layer deepened at the surface. Large amount of precipitation, the major controlling factor for increasing short-term glacial discharges, was accompanied by the apparent development of subglacial discharge that resulted in the rapid drop of salinity below the mid depth. Although amount of subglacial discharge and englacial upwelling may be large, however, their low SPM concentration would have small influence on bottom deposition of terrigenous sediments.

Studies on Physiological Nitrogen Fixation -II. Effects of soil physical properties-soil texture, soil type, drainage and agricultural locality-on the changes of photo synthetic and aerobic heterotrophic nitrogen fixing activity (생리학적(生理學的) 질소고정(窒素固定)에 관(關)한 연구(硏究) -제(第) II 보(報). 답토양(畓土壤)의 물리적특성(物理的特性)-답류형(畓類型), 토성(土性), 배수정도(排水程度), 농업기후대(農業氣候帶)-이 광합성(光合成) 및 타양성질소고정력(他養性窒素固定力)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Lee, Myeong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제20권2호
    • /
    • pp.185-192
    • /
    • 1987
  • A green house experiment was conducted to find out the acetylene reducing and $N_2$-fixing activity from photosynthetic and aerobic heterotrophic nitrogen fixing microorganisms in submerged paddy soil under different agricultural locality, soil series, soil texture, soil type, and drainage condition in which samples taken from without nitrogen treatment plot of NPK trials on 16 sites of the farmer's field. The results obtained were summarized as follows: 1. The highest acetylene reducing activity was observed at 7 days after incubation in the light condition (photo synthetic microbes+heterotrophic bacteria) while it was observed at 35 days incubation in the dark condition (heterotrophic bacteria). 2. Among the soil series, photosynthetic nitrogen fixing activity was pronounced more in Jangae, Ogcheon and Hwadong series while lower was obtained in Buyong and Daejeong series. Aerobic heterotrophic nitrogen fixing activity was high in Buyong and Daejong series. 3. Estimated amount of $N_2$-fixation from acetylene reducing activity was equivalented to 3.0 mg in light condition and 4.9 mg/100g/105 days in dark condition. 4. Among the agricultural locality, photosynthetic nitrogen fixing activity was high in rather warm southern part while heterotrophic nitrogen fixing activity was predominated more in mountainous area and Chungcheong continental. 5. Photosynthetic nitrogen fixing activity was predominated in high productive soil while aerobic heterotrophic nitrogen fixing activity was pronounced more in crose coarse sandy soil. 6. The soils properties of high photosynthetic nitrogen fixing activity were constituted of poorly or imperfectly drained clay or clay loam soil while heterotrophic nitrogen fixing activity was pronounced more in well to moderately well drained sandy or sandy loam soil.

  • PDF

Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change (녹나무과 상록활엽수 자생지 기후특성과 기후변화에 따른 분포 변화)

  • Yu, Seung-Bong;Kim, Byung-Do;Shin, Hyun-Tak;Kim, Sang-Jun
    • Korean Journal of Environment and Ecology
    • /
    • 제34권6호
    • /
    • pp.503-514
    • /
    • 2020
  • Climate change leads to changes in phenological response and movement of plant habitats. Korea's evergreen broad-leaved forest has widened its distribution area compared for the past 20 years, and the range of its native habitats is moving northward. We analyzed climate indices such as the warmth index, the cold index, the lowest temperature in the coldest month, and the annual average temperature, which are closely related to vegetation distribution, to predict the change in the native habitat of Lauraceae evergreen broad-leaved trees. We also analyzed the change and spatial distribution to identify the habitat climate characteristics of 8 species of Lauraceae evergreen broad-leaved trees distributed in the warm temperate zone in Korea. Moreover, we predicted the natural habitat change in the 21st century according to the climate change scenario (RCP 4.5/8.5), applying the MaxEnt species distribution model. The monthly average climate index of the 8 species of Lauraceae evergreen broad-leaved trees was 116.9±10.8℃ for the temperate index, the cold index 3.9±3.8℃, 1495.7±455.4mm for the annual precipitation, 11.7±3.5 for the humidity index, 14.4±1.1℃ for the annual average temperature, and 1.0±2.1℃ for the lowest temperature of winter. Based on the climate change scenario RCP 4.5, the distribution of the Lauraceae evergreen broad-leaved trees was analyzed to expand to islands of Jeollanam-do and Gyeongsangnam-do, adjacent areas of the west and south coasts, and Goseong, Gangwon-do on the east coast. In the case of the distribution based on the climate change scenario RCP 8.5, it was analyzed that the distribution would expand to all of Jeollanam-do and Gyeongsangnam-do, and most regions except for some parts of Jeollabuk-do, Chungcheongnam-do, Gyeongsangbuk-do, and the capital region. For the conservation of Lauraceae evergreen broad-leaved trees to prepare for climate change, it is necessary to establish standards for conservation plans such as in-situ and ex-situ conservation and analyze various physical and chemical characteristics of native habitats. Moreover, it is necessary to preemptively detect changes such as distribution, migration, and decline of Lauraceae evergreen broad-leaved trees following climate change based on phenological response data based on climate indicators and establish conservation management plans.

Human Thermal Environment Analysis with Local Climate Zones and Surface Types in the Summer Nighttime - Homesil Residential Development District, Suwon-si, Gyeonggi-do (Local Climate Zone과 토지피복에 따른 여름철 야간의 인간 열환경 분석 - 경기도 수원시 호매실 택지개발지구)

  • Kong, Hak-Yang;Choi, Nakhoon;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • 제7권4호
    • /
    • pp.227-237
    • /
    • 2020
  • Microclimatic data were measured, and the human thermal sensation was analyzed at 10 local climate zones based on the major land cover classification to investigate the thermal environment of urban areas during summer nighttime. From the results, the green infrastructure areas (GNIAs) showed an average air temperature of 1.6℃ and up to 2.4℃ lower air temperature than the gray infrastructure areas (GYIAs), and the GNIAs showed an average relative humidity of 9.0% and up to 15.0% higher relative humidity. The wind speed of the GNIAs and GYIAs had minimal difference and showed no significance at all locations, except for the forest location, which had the lowest wind speed owing to the influence of trees. The local winds and the surface roughness, which was determined based on the heights of buildings and trees, appeared to be the main factors that influenced wind speed. At the mean radiant temperature, the forest location showed the maximum value, owing to the influence of trees. Except at the forest location, the GNIAs showed an average decrease of 5.5℃ compared to GYIAs. The main factor that influenced the mean radiant temperature was the sky view factor. In the analysis of the human thermal sensation, the GNIAs showed a "neutral" thermal perception level that was neither hot nor cold, and the GYIAs showed a "slightly warm" level, which was a level higher than those of the GNIAs. The GNIAs showed a 3.2℃ decrease compared to the GYIAs, except at the highest forest location, which indicated a half-level improvement in the human thermal environment.

A Study on the Construction Characteristics of Folk Houses Designated as Cultural Heritage in Jeolla-do Province (전라도 지역 문화재 지정 민가정원의 현황 및 조영특성)

  • Jin, Min-Ryeong;Jeong, Myeong-Seok;Sim, Ji-Yeon;Lee, Hye-Suk;Lee, Kyung-Mi;Jin, Hye-Yeong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • 제38권4호
    • /
    • pp.25-38
    • /
    • 2020
  • For the purpose of recording Folk House Garden, this study was to review the historical value, location, space composition, Placememnt of the Building, garden composition, and management status of Folk House Garden designated as a cultural asset in Jeolla-do and to promote continuous maintenance and preservation in the future and enhance its value. The results of the study are as follows. First, most of them have been influenced by the trend of the times, such as the creation of a modern private garden and the spread of agricultural and commercial development through the garden components influenced by the royal, Japanese, and Western styles. Second, there are differences in the spatial composition of private households and the way they handle sponsorship, depending on the geographical location. When the geographical features were divided into flat and sloping areas, private houses located on flat land were divided into walls, walls were placed around the support area, and flower systems and stone blocks were created. The private houses located on the slope were divided into two to three tiers of space, and the wooden plant, flower bed, and stone bed were naturally connected to the background forest without creating a wall at the rear hill. Third, the size of the house and the elements of the garden have been partially destroyed, damaged, and changed, and if there is a lack of records of the change process, there is a limit to the drawing floor plan. There were many buildings and garden components that were lost or damaged due to changes in the trend and demand of the times, and some of them without records had to rely on the memory of owners and managers. Fourth, the species in Warm Temperate Zone, which reflects the climatic characteristics of Jeolla-do, was produced, and many of the exotic species, not traditional ones, were introduced. Fifth, fine-grained tree management standards are needed to prepare for changes in spatial function and plant species considering modern convenience.

Cold Cloud Genesis and Microphysical Dynamics in the Yellow Sea using WRF-Chem Model: A Case Study of the July 15, 2017 Event (WRF-Chem 모델을 활용하여 장마 기간 황해에서 발달하는 한랭운과 에어로졸 미세물리 과정 분석: 2017년 7월 15일 사례)

  • Beom-Jung Lee;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • 제44권6호
    • /
    • pp.578-593
    • /
    • 2023
  • Intense convective activity and heavy precipitation inundated Seoul and its metropolitan area on July 15, 2017. This study investigated the synoptic-scale meteorological drivers of cold cloud genesis of this event. The WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) model was employed to explore the intricate interplay between meteorological factors and the indirect effects of PM2.5 aerosols originating from eastern China. The PM2.5 aerosols' indirect effect was quantified by contrasting outcomes between the comprehensive Aerosol Radiation Interaction experiment (encompassing aerosol radiation feedback, cloud chemistry processes, and wet scavenging in the WRF-Chem model) and ACR (Aerosol Cloud Radiation interaction) experiment. The ACR experiment specifically excluded aerosol radiation feedback while incorporating only cloud chemistry processes and wet scavenging. Results indicated that in the early hours of July 15, 2017, a convergence of warm, moisture-laden airflow originating from southeast China and the East China Sea unfolded over the Yellow Sea. This convergence was driven by the juxtaposition of a low-pressure system over the Chinese mainland and Northwest Pacific high. Notably, at approximately 12 km altitude, the resultant convective clouds were characterized by the presence of ice crystals, a hallmark of continental-origin cold clouds. The WRF-Chem model simulations elucidated the role of PM2.5 aerosols from eastern China, attributing 5.7, 10.4, and 10.8% to cloud water, ice crystal column, and liquid water column formation, respectively, within the developing cold clouds. Thus, this study presented a meteorological mechanism elucidating the formation of deep convective clouds over the Yellow Sea and the indirect effects of PM2.5 aerosols originating from eastern China.