Browse > Article

Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula  

Yoshioka, Takahito (Institute for Hydrospheric-Atmospheric Sciences Nagoya Univ)
Kang, Sang-Joon (School of Science Ed College of Education Chungbuk National University)
Publication Information
Abstract
The environmental change of Yong-nup in Mt. Dae-Am, which is located at the northern part of Kangwon-Do, Korea, was assesed with peat sedimentary carbon and nitrogen isotope analysis. The surface layer of the peat (0 ${\sim}$ 5 cm) was 190 year BP, and the middle layers (30 ${\sim}$ 35 cm and 50 ${\sim}$ 55 cm) were 870 year BP and 1900 year BP, respectively. Bulk sedimentation rate was estimated to be about 0.4 mm $year^{-1}$ for 0 cm to 30 cm and 0.15 mm $year^{-1}$ for 35 cm to 50 cm. The $^{14}C$ age of the bottom sediment (75 ${\sim}$ 80 cm) collected and measured in this study was about 1900 year BP, although it was measured that the $^{14}C$ of the lowest bottom sediment in Yong-nup was 4105 ${\pm}$ 175 year BP (GX-23200). Since the $^{14}C$ ages for 50 ${\sim}$ 55 cm and 75 ${\sim}$ 80 cm layers were almost the same as 1890 ${\pm}$ 80 fear BP (NUTA 5364) and 1850 ${\pm}$ 90 year BP (NUTA 5462), respectively, we have estimated that the deep layers (55 ${\sim}$ 80 cm) in the high moor were the original forest soil. The low organic C and N contents in the deeper layers supported the inference. The sediment of 50 ${\sim}$ 55 cm layer contains much sandy material and showed very low organic content, suggesting the erosion (flooding) from the surrounding area. In this context, the Yong-nup, high moor, of Mt. Dae-Am, might have developed to the sampling site at about 1900 year BP. The ${\delta}^{13}C$ values of organic carbon and the ${\delta}^{15}N$ values of total nitrogen in the peat sediments fluctuated with the depths. The profile of ${\delta}^{13}C$ may indicate that the Yong-nup of Mt. Dae-Am have experienced the dry-wet and cool-warm period cycles during the development of the high moor. The ${\delta}^{15}N$ may indicate that the nitrogen cycling in the Yong-nup have changed from the closed (regeneration depending) system to the open (rain $NO_3\;^-$ and $N_2$ fixation depending) system during the development of the high moor.
Keywords
high moor; stable isotope; carbon isotope ratio; nitrogen isotope ratio; absolute year; bulk sedimentation rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Birks, H.J.B. and H.H. Birks. 1980. Quaternary Palaeoecology. Edward Anold. London. p.289
2 Minagawa, M., D.A. Winter and I.R. Kaplan. 1984. Comparision on kjeldahl and combution methods for measurement of nitrogen isotope ratios in organic matter. Anal. Chem. 56: 1859-1861   DOI   ScienceOn
3 Nadelhoffer, K.J. and B. Fry. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Am. J. 52: 1633-1640   DOI   ScienceOn
4 Osvald, H. 1928. Nordamerikanska mosstyper. Svensk Bot. Tids. 22: 377-391
5 Osvald, H. 1930. Soedra sveriges mosstyper. Svensk Geogr. Arsb. 30: 117-140
6 Rundel, P.W., J.R. Ehleringer and K.A. Nagy. 1988. Stable Isotope in Ecological Research. Ecological Studies. Vol. 68. Springer-Verlag. New York
7 Yoshioka, T., E. Wada and Y. Saijo. 1988. Isotopic characterization of lake Kizaki and Suwa. Jap. J. Limnology. 49: 119-128   DOI
8 Yoshioka, T., S. Ueda, T. Miyajima, E. Wada, N. Yoshida, A. Sugimoto, P. Vijarnsorn and S. Boonprakub. 2002. Biogeochemical properties of a tropcal swamp forest ecosystem in southern Thailand. Limnology. 3: 51-59   DOI   ScienceOn
9 中村 純. 1967. 花紛分析. 古今書院. 東京. p.232
10 Minomo, K., T. Akagi, S. Yonemura, M. Yoh, H. Turuta and T. Nakamura. 1997. ${\Delta}^{13}$C vertical change of peats in the Ozegahara wetland. Dating and Materials Research Center, Nagoya Univ. III: 146-151
11 White, J.W.C., P. Ciais, R.A. Figgs, R. Kenny and V. Markgraf. 1994. A high-resolution record of atmospheric $CO_2$ content from carbon isotopes in peats. Nature. 367: 153-156   DOI   ScienceOn
12 Kitagawa, H. 1987. Carbon isotope ratio of cellulose extraced from Sugi tree (Cryptomeria japonica). Geosci. Repts. Shizuoka Univ. 13: 25-30
13 강상준. 1987. 대암산 고층습원의 식물생태학적 연구. 휴전선 일대의 자연연구. 강원대학교 출판부. pp.169-201
14 塚田松雄. 1974. 古生態學 II.-應用編-. 共立出版株式會社. 東京. p.231
15 Mariotti, A., P.D. Pierre, J.C. Vedy and S. Bruckert. 1980. The abundance of natural nitrogen-15 in the organic matter of soils along an altitidinal gradient (Chablais, Haute Savoie, France). Catena. 7: 293-300
16 Nadelhoffer, K., G. Shaver, B. Fry, A. Giblin, L. Johnson and R. McKane. 1996. 15N natural abundances and N use by tundra plants. Oecologia. 107: 386-394   DOI
17 Farquhar, G.D. and P.A. Richards. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539- 552   DOI
18 강상준. 1988. 대암산 고층습원의 이탄구조와 화분분석. 환경청. 대암산 자연생태계 조사보고서. pp. 99-146
19 Birks, H.J.B. and A.D. Gordon. 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press. Orlando. p.317
20 Peters, K.E., R.E. Sweeney and I.R. Kaplan. 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr. 24: 598- 604
21 Sukumar, R., T. Ramesh, R.K. Pant and G. Rajagopalan. 1993. A ${\Delta}^{13}$Crecord of late Quaternary climate change from tropical peats in southern India. Nature. 364: 703 -706   DOI
22 Evans, R. and J.R. Ehleringer. 1993. A break in the nitrogen cycle in aridlands? Evidence from ${\Delta}^{15}$N of soil. Oecologia. 94: 314-317   DOI   ScienceOn
23 中井信之, 洪思澳. 1980. 韓國永郞湖堆積物の地球化學的手段による古氣候變化の硏究-安定同位体化 ($^{13}C/^{12}C$)及び 硫物含量にとる-.交部省海外學術調査現 地調査中間報告. (404332). pp.57-61
24 Vitousek, P.M., G. Shearer and D.H. Kohl. 1989. Foliar $^{15}$N natural abundance in Hawaiian rainforest: patterns and possible mechanism. Oecologia. 78: 383-388   DOI
25 Kitagawa, H. and E. Matsumoto. 1993. Climate implication of ${\Delta}^{13}$C variations in a Japanese cedar (Cryptomeria japonica) during the last two millenia. Geophysical Res. Letters. 22: 2155-2158
26 阪口豊. 1974. 泥炭地の地球-環境境の變化を探る-.東京大學 出版會. 東京. p.329
27 Moore, P.D. and J.A. Webb. 1978. An Illustrated Guide to Pollen Analysis. Hodder and Stoughton. London. p.133
28 Benner, R., M.L. Fogel, E.K. Spraugue and R.E. Hodson, 1987. Depletion of $^{13}C$ in lignin and its implication for stable isotope studies. Nature. 329: 708-710   DOI
29 Faegri, K. and J. Iversen. 1975. Textbook of Pollen Analysis. Munksgaard. Denmark. p.295
30 Moore, P.D., J.A. Webb and M.E. Collinson. 1991. Pollen Analysis. Blackwell Scientific Pub. London. p.216
31 Kang, S.J. 1976. Ecological studies of the raised bog in Dae -Am mountain adjacent to DMZ in Korea. J. Res. Sci. Ed., Chuncheon Teachers College. 2: 81-104
32 Williams, P.M. and L.I. Gordon. 1970. Carbon-13 : carbon- 12 ratios in dissolved and particulate organic matter in the sea. Deep-Sea Res. 17: 19-27
33 Schultz, D.J. and J.A. Calder. 1976. Organic carbon $^{13}C/^{12}C$ variations in estuarine sediments. Geochim. Cosmochim. Acta. 40: 381-385   DOI   ScienceOn
34 Bertram, H.G. and G.H. Schleser. 1982. The ($^{13}C/^{12}C$) isotope ratios in a North-German podzol. In Stable Isotopes. Schmidt H.L., H. Foerstel and K. Heinzinger eds., Elsevier Scientific Publishing Company. Amsterdam. pp. 115-120
35 Ishizuka, T. 1977. Stable carbon isotope composition of organic material and carnonate in sediment of a swamp and lakes in Honshu island, Jap. J. Earth Sci. Nagoya Univ. 25: 11-21
36 Kang, S.J., T. Yoshioka, J.Y. Lee and H.A. Takahashi 2001. Paleo-environment in Dae-Am San high moor in the Korean peninsula. Radiocarbon. 43: 555-559
37 Willis, A.J. 1973. Introduction to Plant Ecology. London Allen & Unwin Ltd. Oxford. pp.56-73