DOI QR코드

DOI QR Code

WRF-Chem 모델을 활용하여 장마 기간 황해에서 발달하는 한랭운과 에어로졸 미세물리 과정 분석: 2017년 7월 15일 사례

Cold Cloud Genesis and Microphysical Dynamics in the Yellow Sea using WRF-Chem Model: A Case Study of the July 15, 2017 Event

  • 이범중 (한국교원대학교 지구과학교육과) ;
  • 조재희 (한국교원대학교 자연과학연구소) ;
  • 김학성 (한국교원대학교 지구과학교육과)
  • Beom-Jung Lee (Department of Earth Science Education, Korean National University of Education) ;
  • Jae-Hee Cho (Natural Science Institute, Korean National University of Education) ;
  • Hak-Sung Kim (Department of Earth Science Education, Korean National University of Education)
  • 투고 : 2023.12.04
  • 심사 : 2023.12.28
  • 발행 : 2023.12.31

초록

2017년 7월 15일 서울과 수도권에 집중호우를 발생시킨 깊은 대류운과 강수 발달에 대한 종관 기상 메커니즘을 규명하고 중국 동부지역으로부터의 PM2.5 에어로졸의 간접효과를 WRF-Chem 실험을 통해 분석하였다. WRF-Chem 모델에 에어로졸과 복사의 피드백, 구름 화학 과정, 습식 세정을 모두 포함한 ARI (Aerosol Radiation Interaction) 실험과 에어로졸과 복사의 피드백을 제외하고 구름 화학 과정, 습식 세정만을 포함한 ACR (Aerosol Cloud Radiation interaction) 실험 결과의 차이로부터 PM2.5 에어로졸 간접효과를 산출하였다. 2017년 7월 15일 새벽에 황해와 한반도에서는 동아시아 대륙에서 저기압-북서 태평양의 고기압 분포로 인해 중국 남동 지역과 동중국해로부터 덥고 습한 기류가 수렴하고 있었다. 이러한 황해의 종관 기상에 의해 발달하는 대류운은 높이 12 km 이상이며 고체 수상체를 형성하고 있었는데, 이는 주로 대륙 위에서 발달하는 한랭운(많은 빙정을 형성하며 운정고도가 8 km 이상)의 특성을 나타내고 있었다. 특히, WRF-Chem 모델 실험을 통해 중국 동부지역으로부터 확산하는 PM2.5 에어로졸이 구름물 형성에 5.7%, 고체 수상체 형성에 10.4%, 그리고 액체 수상체 형성에 10.8%로 대류운이 한랭운으로 발달하는 데 기여하고 있었다. 본 연구는 황해 위에서 깊은 대류운이 발달하는 과정에 대한 기상적 메커니즘과 더불어 중국 동부지역으로부터 에어로졸에 의한 간접효과의 영향을 제시하였다.

Intense convective activity and heavy precipitation inundated Seoul and its metropolitan area on July 15, 2017. This study investigated the synoptic-scale meteorological drivers of cold cloud genesis of this event. The WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) model was employed to explore the intricate interplay between meteorological factors and the indirect effects of PM2.5 aerosols originating from eastern China. The PM2.5 aerosols' indirect effect was quantified by contrasting outcomes between the comprehensive Aerosol Radiation Interaction experiment (encompassing aerosol radiation feedback, cloud chemistry processes, and wet scavenging in the WRF-Chem model) and ACR (Aerosol Cloud Radiation interaction) experiment. The ACR experiment specifically excluded aerosol radiation feedback while incorporating only cloud chemistry processes and wet scavenging. Results indicated that in the early hours of July 15, 2017, a convergence of warm, moisture-laden airflow originating from southeast China and the East China Sea unfolded over the Yellow Sea. This convergence was driven by the juxtaposition of a low-pressure system over the Chinese mainland and Northwest Pacific high. Notably, at approximately 12 km altitude, the resultant convective clouds were characterized by the presence of ice crystals, a hallmark of continental-origin cold clouds. The WRF-Chem model simulations elucidated the role of PM2.5 aerosols from eastern China, attributing 5.7, 10.4, and 10.8% to cloud water, ice crystal column, and liquid water column formation, respectively, within the developing cold clouds. Thus, this study presented a meteorological mechanism elucidating the formation of deep convective clouds over the Yellow Sea and the indirect effects of PM2.5 aerosols originating from eastern China.

키워드

참고문헌

  1. Albrecht, B.A., 1989, Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  2. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, J.E., and Hofmann, D.J., 1992, Climate forcing by anthropogenic aerosols. Science, 255, 423-430. https://doi.org/10.1126/science.255.5043.423
  3. Chen, F. and Dudhia, J., 2001, Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system, Part I: Model description and implementation. Monthly Weather Review, 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  4. Cho, J.H. and Kim, H.S., 2023, PM10 aerosol enhancement in the anticyclonic anomalies caused by the East Asian spring warming of 2021. Atmospheric Research, 281, 106496.
  5. Cho, J.H., Kim, H.S., and Chung, Y.S., 2021, Spatiotemporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability. Air Quality, Atmosphere & Health, 14, 1001-1016. https://doi.org/10.1007/s11869-021-00995-y
  6. Cho, J.H., Kim, H.S., and Yoon, M.B., 2022, The influence of atmospheric blocking on regional PM10 aerosol transport to South Korea during February-March of 2019. Atmospheric Environment, 277, 119056.
  7. Chung, H.S., Chung, Y.A., Kim C.M., and Ryu C.S., 2012, The characteristics of heavy rainfall over the Korean Peninsular-Case studies of heavy rainfall events during the on and off Changma season. Journal of the Environmental Sciences, 21, 511-1521. https://doi.org/10.5322/JES.2012.21.12.1511
  8. Chung, Y.S. and Kim, H.S., 2019, Observations on changes in Korean Changma rain associated with climate warming in 2017 and 2018. Air Quality, Atmosphere & Health, 12, 197-215. https://doi.org/10.1007/s11869-018-00658-5
  9. Dong, X., Fu, J.S., Huang, K., Zhu, Q., and Tipton, M., 2019, Regional climate effects of biomass burning and dust in East Asia: Evidence from modeling and observation. Geophysical Research Letters, 46, 11490-11499. https://doi.org/10.1029/2019GL083894
  10. Emmons, L.K., Schwantes, R.H., Orlando, J.J., Tyndall, G., Kinnison, D., Lamarque, J.-F., Marsh, D., Mills, M.J., Tilmes, S., Bardeen, C., Buchholz, R.R., Conley, A., Gettelman, A., Garcia, R., Simpson, I., Blake, D.R., Meinardi, S., and Petron, G., 2020, The Chemistry Mechanism in the Community Earth System Model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001882.
  11. Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.-F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., and Kloster, S., 2010, Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3, 43-67. https://doi.org/10.5194/gmd-3-43-2010
  12. Fan, J., Rosenfeld, D., Ding, Y., Leung, L.R., and Li, Z., 2012, Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophysical Research Letters, 39, L09806.
  13. Gevorgyan, A., 2018, Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model. Journal of Geophysical Research Atmospheres, 123, 11,008-11,029. https://doi.org/10.1029/2017JD028247
  14. Grell, G.A. and Devenyi, D., 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29, 38-1-38-4. https://doi.org/10.1029/2002GL015311
  15. Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X., 2012, The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-1492. https://doi.org/10.5194/gmd-5-1471-2012
  16. Haywood, J. and Boucher, O., 2000, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics, 38, 513-543. https://doi.org/10.1029/1999RG000078
  17. Heintzenberg, J., 1989, Fine particles in the global troposphere A review. Tellus, 41, 149-160. https://doi.org/10.1111/j.1600-0889.1989.tb00132.x
  18. Hong, S.Y., Noh, Y., and Dudhia J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  19. Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S., and Collins, W.D., 2008, Radiative forcing by longlived greenhouse gases: calculations with the AER radiative transfer models. Journal of Geophysical Research, 113, D13103.
  20. Jeong, J.E., Cho, J.H., and Kim, H.S., 2022, Analysis of impacts of the Northeast Pacific atmospheric blocking and contribution of regional transport to high-PM10 haze days in Korea. The Journal of The Korean Earth Science Society, 43, 77-90. (in Korean) https://doi.org/10.5467/JKESS.2022.43.1.77
  21. Jimenez, P.A., Dudhia, J., Gonzalez-Rouco, J.F., Navarro, J., Montavez, J.P., and Garcia-Bustamante, E., 2012, A revised scheme for the WRF surface layer formulation. Monthly Weather Review, 140, 898-918. https://doi.org/10.1175/MWR-D-11-00056.1
  22. Kang, K. and Choi, Y., 2021, A study on the recent regime shift of summer extreme rainfall and its resulting change of synoptic characteristics in the Republic of Korea. Journal of the Korean Geographical Society, 56, 523-535. (in Korean)
  23. Kant, S., Panda, J., Rao, P., Sarangi, C., and Ghude, S,D., 2021, Study of aerosol-cloud-precipitation-meteorology interaction during a distinct weather event over the Indian region using WRF-Chem. Atmospheric Research, 247, 105144.
  24. Kim, A.H. and Lee, T.Y., 2016, A study of a heavy rainfall event in the middle Korean Peninsula in a situation of a synoptic-scale ridge over the Korean Peninsula. Atmosphere, 26, 577-598. (in Korean) https://doi.org/10.14191/ATMOS.2016.26.4.577
  25. Kim, H.C., Kim, E., Bae, C., Cho, J.H., Kim, B.U., and Kim, S., 2017, Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmospheric Chemistry and Physysics, 17, 10315-10332. https://doi.org/10.5194/acp-17-10315-2017
  26. Kim, H.S., Chung, Y.S., and Lee, S.G., 2012, Characteristics of aerosol types during large-scale transport of air pollution over the Yellow Sea region and at Cheongwon, Korea in 2008. Environmental Monitoring and Assessment, 184, 1973-1984. https://doi.org/10.1007/s10661-011-2092-9
  27. Kim, Y., Yoon, S.C., Kim, S.W., Kim, K.Y., Lim, H.C., and Ryu, J., 2013, Observation of new particle formation and growth events in Asian continental outflow. Atmospheric Environment, 64, 160-168. https://doi.org/10.1016/j.atmosenv.2012.09.057
  28. Knote, C., Hodzic, A., Jimenez, J.L., Volkamer, R., Orlando, J.J., Baidar, S., Brioude, J., Fast, J., Gentner, D.R., Goldstein, A.H., Hayes, P.L., Knighton, W.B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q., 2014, Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model. Atmospheric Chemistry and Physics, 14, 6213-6239. https://doi.org/10.5194/acp-14-6213-2014
  29. Knote, C., Hodzic, A., and Jimenez, J. L., 2015, The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmospheric Chemistry and Physics, 15, 1-18. https://doi.org/10.5194/acp-15-1-2015
  30. Lee, H.J. and Cho, J.H., 2022, Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem. The Journal of The Korean Earth Science Society, 43, 283-302. (in Korean) https://doi.org/10.5467/JKESS.2022.43.2.283
  31. Lee, J.H., Cho, J.H., and Kim H.S., 2022, Analysis of the contribution of biomass burning emissions in East Asia to the PM10 and radiation energy budget in Korea. The Journal of The Korean Earth Science Society, 43, 265-282. (in Korean) https://doi.org/10.5467/JKESS.2022.43.2.265
  32. Li, J., Wang, W.C., Sun, Z. Wu, G., Liao, H., and Liu, Y., 2014, Decadal variation of East Asian radiative forcing due to anthropogenic aerosols during 1850-2100, and the role of atmospheric moisture. Climate Research, 61, 241-257. https://doi.org/10.3354/cr01236
  33. Li, J., Li, P., Yuan, L., Yin, Y., Wang, Z., Li, J., Li, Y., Ren, G., and Cai, Z., 2017, Physical and optical properties of atmospheric aerosols in summer at a suburban site in North China. Aerosol and Air Quality Research, 17, 1474-1488. https://doi.org/10.4209/aaqr.2016.12.0525
  34. Lien, W.H., Owili, P.O., Muga, M.A., and Lin, T.H., 2019, Ambient particulate matter exposure and under-five and maternal deaths in Asia. International Journal of Environmental Research and Public Health, 16, 3855.
  35. Mansell, E.R., Ziegler, C.L., and Bruning, E.C., 2010, Simulated electrification of a small thunderstorm with two-moment bulk microphysics. Journal of the Atmospheric Sciences, 67, 171-194. https://doi.org/10.1175/2009JAS2965.1
  36. Menon, S., Hansen, J., Nazarenko, L., and Luo, Y., 2002, Climate effects of black carbon aerosols in China and India. Science, 297, 2250-2253. https://doi.org/10.1126/science.1075159
  37. Mogno, C. and Marvin, M.R., 2022, EDGAR v5.0 emissions inventory speciated for the MOZART chemical mechanism, Zenode. doi:10.5281/zenodo.6130621.
  38. Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T., 2007, An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric Chemistry and Physics, 7, 4419-4444. https://doi.org/10.5194/acp-7-4419-2007
  39. Park, S.Y., Lee H.J., Kang J.E., Lee, T.H., and Kim, C.H., 2018, Aerosol radiative effects on mesoscale cloud-precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign. Atmospheric Environment, 172, 109-123. https://doi.org/10.1016/j.atmosenv.2017.10.044
  40. Park, S.S. and Kim, Y.J., 2005, Source contributions to fine particulate matter in an urban atmosphere. Chemosphere, 59, 217-226. https://doi.org/10.1016/j.chemosphere.2004.11.001
  41. Pincus, R. and Baker, M.B., 1994, Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372, 250-252. https://doi.org/10.1038/372250a0
  42. Ramana, M.V., Ramanathan, V., Feng, Y., Yoon, S.C., Kim, S.W., Carmichael, G.R., and Schauer, J.J., 2010, Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nature Geoscience, 3, 542-545. https://doi.org/10.1038/ngeo918
  43. Rosenfeld, D., Lohmann, U., Raga, G.B., O'Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M.O., 2008, Flood or drought: How do Aerosols Affect Precipitation?. Science, 321, 1309-1313. https://doi.org/10.1126/science.1160606
  44. Rosenfeld, D., Fischman, B., Zheng, Y., Goren, T., and Giguzin, D., 2014, Combined satellite and radar retrievals of drop concentration and CCN at convective cloud base. Geophysical Research Letters, 41, 3259-3265. https://doi.org/10.1002/2014GL059453
  45. Ryu, Y.H., Min, S.K., and Knote, C., 2022, Contrasting roles of clouds as a sink and source of aerosols: A quantitative assessment using WRF-Chem over East Asia. Atmospheric Environment, 277, 119073.
  46. Segal, Y., Pinsky, M., Khain, A., and Erlick, C., 2003, Thermodynamic factors influencing bimodal spectrum formation in cumulus clouds. Atmospheric Research, 66, 43-64. https://doi.org/10.1016/S0169-8095(02)00172-2
  47. Sohn, B.J., Ryu, G.H., Song, H.J., and Ou, M.L., 2013, Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements. Monthly Weather Review, 141, 3873-3888. https://doi.org/10.1175/MWR-D-13-00075.1
  48. Song, H.J. and Sohn, B.J., 2015, Two heavy rainfall types over the Korean Peninsula in the humid East Asian summer environment: A satellite observation study. Monthly Weather Review, 143, 363-382. https://doi.org/10.1175/MWR-D-14-00184.1
  49. Twomey, S., 1977, The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 34, 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
  50. Wang, J., Feng, J., Wu, Q., and Yan, Z., 2016, Impact of anthropogenic aerosols on summer precipitation in the Beijing-Tianjin-Hebei urban agglomeration in China: Regional climate modeling using WRF-Chem. Advances in Atmospheric Sciences, 33, 1-14. https://doi.org/10.1007/s00376-015-5103-x
  51. Weber, N.J., Mass, C.F., and Kim, D.H., 2020, The impacts of horizontal grid spacing and cumulus parameterization on subseasonal prediction in a global convection-permitting model. American meteorological society, 148, 4747-4765. https://doi.org/10.1175/MWR-D-20-0171.1
  52. Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., and Soja, A.J., 2011, The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4, 625-641. https://doi.org/10.5194/gmd-4-625-2011
  53. Zaveri, R.A., Easter, R.C., Fast, J.D., and Peters, L.K., 2008, Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Journal of Geophysical Research, 113, D13204.
  54. Zhang, Q., Quan, J.N., Tie, X.X., Li, X., Liu, Q., and Gao, Y., 2015, Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing. Science of The Total Environment, 502, 578-584. https://doi.org/10.1016/j.scitotenv.2014.09.079
  55. Zhang, L., Fu, T.M., Tian, H., Ma, Y., Chen, J.P., Tsai, T.C., Tsai, I.C., Meng, Z., and Yang, X., 2020, Anthropogenic aerosols significantly reduce mesoscale convective system occurrences and precipitation over southern China in April. Geophysical Research Letters, 47, e2019GL086204.
  56. Zhou, D., Ding, K., Huang, X., Liu, L., Liu, Q., Xu, Z., Jiang, F., Fu, C., and Ding, A., 2018, Transport, mixing and feedback of dust, biomass burning and anthropogenic pollutants in eastern Asia: A case study. Atmospheric Chemistry and Physics, 18, 16345-16361. https://doi.org/10.5194/acp-18-16345-2018