• 제목/요약/키워드: Wall-Thinned Piping

검색결과 44건 처리시간 0.023초

Efficient elastic stress analysis method for piping system with wall-thinning and reinforcement

  • Kim, Ji-Su;Jang, Je-Hoon;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.732-740
    • /
    • 2022
  • A piping system stress analysis need to be re-performed for structural integrity assessment after reinforcement of a pipe with significant wall thinning. For efficient stress analysis, a one-dimensional beam element for the wall-thinned pipe with reinforcement needs to be developed. To develop the beam element, this work presents analytical equations for elastic stiffness of the wall-thinned pipe with reinforcement are analytically derived for axial tension, bending and torsion. Comparison with finite element (FE) analysis results using detailed three-dimensional solid models for wall-thinned pipe with reinforcement shows good agreement. Implementation of the proposed solutions into commercial FE programs is explained.

Evaluation of Piping Integrity in Thinned Main Feedwater Pipes

  • Park, Young-Hwan;Kang, Suk-Chull
    • Nuclear Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.67-76
    • /
    • 2000
  • Significant wall thinning due to flow accelerated corrosion(FAC)was recently reported in main feedwater pipes in 3 Korean pressurized water reactor(PWR) plants. The main feedwater pipes in one plant were repaired using overlay weld method at the outside of pipe, while those in 2 other plants were replaced with new pipes. In this study, the effect of the wall thinning in the main feedwater pipes on piping integrity was evaluated using finite element method. Especially, the effects of both the overlay weld repair and the stress concentration in notch-type thinned area on the piping integrity were investigated. The results are as follows : (1) The piping load carrying capacity may significantly decrease due to FAC. In special, the load carrying capacity of the main feedwater pipe was reduced by about 40% during about 140 months operation in Korean PWR plants. (2) By performing overlay weld repair at the outside of pipe, the piping load carrying capacity can increase and the stress concentration level in the thinned area can be reduced.

  • PDF

감육 배관의 다양한 보강 형태에 따른 이론적 등가 강성 검증 (Analytical Equivalent Stiffness Analysis for Various Reinforcements of Wall-thinned Pipe)

  • 장제훈;김지수;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.11-18
    • /
    • 2022
  • When wall-thinning in a pipe occurs during operation of nuclear power plant, reinforcement of the pipe needs to be performed. Accordingly, the structural response of the piping system due to introduction of the reinforcement may be re-evaluated. For elastic structural analysis of the piping system with the reinforced pipe using finite element (FE) analysis, the stiffness of the reinforced pipe is needed. In this study, the stiffness matrix of wall-thinned pipe with pad reinforcement or composite reinforcement is analytically derived. The validity of the proposed equations is checked by comparing with systematic finite element (FE) analysis results.

등가 강성 개념을 이용한 가동 원전 2, 3등급 감육 보강 배관의 응력 평가 및 사례해석 (Stress Evaluation and Case Study of Reinforced Wall-thinned Class 2 and 3 Pipes in Operating Nuclear Power Plants Using Equivalent Stiffness Concept)

  • ;김재윤;황진하;김윤재;김만원
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.54-60
    • /
    • 2022
  • ASME BPVC provides stress evaluation rules for Class 2 and 3 nuclear piping. However, such rules are difficult to be applied to reinforced wall-thinned pipes during service. To resolve this issue, a new method for stress evaluation of reinforced wall-thinned pipes is proposed in this work, based on the equivalent stiffness concept. By converting a reinforced wall-thinned pipe to an equivalent straight pipe having the same stiffness, stress evaluation can be proceeded using the current ASME BPVC rules. The proposed method is applied to pipes with 4 different normal pipe size and the effects of reinforcement and wall-thinning dimensions on evaluated stresses are discussed.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

내부 감육 배관의 손상압력 평가 모델 개발 (Development of Failure Pressure Evaluation Model for Internally Well Thinned Piping Components)

  • 나만균;박치용;김진원
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.947-954
    • /
    • 2005
  • The purpose of this study is to develop failure pressure evaluation models, which are applicable to straight pipes and elbows containing an internally wall thinning defect induced by flow-accelerated-corrosion (FAC). In this study, thus, three dimensional finite element (FE) analyses are performed to investigate the dependences of failure pressure of internally wall thinned pipe on the defect shape, the pipe geometry, and the defect location and bend radius of elbow. Also, the existing failure pressure assessment models for externally wall thinned pipes are examined. Based on these, the new models for assessing failure pressure of piping components with an internally wall thinning defect are proposed. Comparison of failure pressure, predicted by proposed models, with FE analysis result shows good agreement regardless of pipe type, defect shape, and defect location and bend radius.

감육배관의 건전성평가 및 정비 관련 기술기준 고찰 (Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe)

  • 이성호;이요섭;김홍덕;이경수;황경모
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

원주방향 균열이 발생되는 곡관 감육부의 형상적 특성 (Geometric Characteristic of Wall-thinning Defect Causing Circumferential Crack in Pipe Elbows)

  • 김진원;이성호
    • 한국압력기기공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.27-34
    • /
    • 2011
  • The objective of this study is to classify the geometry of wall-thinning defect that causes a circumferential crack in the pipe elbows subjected to internal pressure. For this objective, first of all a criterion to determine the occurrence of circumferential cracking at wall-thinned area was developed based on finite element simulation for burst tests of pipe elbow specimens that showed axial and circumferential cracking at wall-thinned area. In addition, parametric finite element analysis including various wall-thinning geometries, locations, and pipe geometries was conducted and the wall-thinning geometries that initiate circumferential crack were determined by applying the criterion to the results of parametric analysis. It showed that the circumferential crack occurs at wall-thinning defect, which has a deep, wide, and short geometry. Also, it is indicated that the pipe elbows with larger radius to thickness ratio are more susceptible to circumferential cracking at wall-thinned area.

원전 배관감육 평가를 위한 새로운 기법의 도입 및 타당성 (Introduction and Feasibility on a New Technology for the Pipe Wall Thinning Evaluation of Nuclear Power Plants)

  • 황경모;윤훈;박현철
    • Corrosion Science and Technology
    • /
    • 제13권2호
    • /
    • pp.62-69
    • /
    • 2014
  • A huge number of carbon steel piping components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the piping components. To manage the wall thinning degradation, most of utilities in the world predict the wall thinning rate based on the computational program such as CHECWORKS, COMSY, and BRT-CICERO, evaluate the UT (Ultrasonic Test) data, and determine next inspection timing, repair or replacement, if needed. There are several evaluation methods, such as band, blanket, and strip methods, commonly used for determining the wear of piping components from single UT inspection data. It has been identified that those single UT evaluation methods not only do not consider the manufacturing features of pipes, but also may exclude the data of the most thinned point when determining the representative wear rate of piping components. This paper describes a newly developed single UT evaluation method, E-Cross method, for solving above problems and introduces application examples for several pipes and elbows. It was identified that the E-Cross method using the length and width of UT data excluded the most thinned points appropriate as the single UT evaluation method for thinned piping components.

감육형상 및 내압이 원자력 감육배관의 파단에 미치는 영향 -내압과 굽힘모멘트가 동시에 작용하는 경우- (Effect of Wall Thinned Shape and Pressure on Failure of Wall Thinned Nuclear Piping Under Combined Pressure and Bending Moment)

  • 심도준;임환;최재붕;김영진;김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.742-749
    • /
    • 2003
  • Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G and ASME Code Case N597 are still useful fer assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most Pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element(FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress(${\alpha}$$\sub$u,t/) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.