DOI QR코드

DOI QR Code

Analytical Equivalent Stiffness Analysis for Various Reinforcements of Wall-thinned Pipe

감육 배관의 다양한 보강 형태에 따른 이론적 등가 강성 검증

  • 장제훈 (고려대학교 기계공학부) ;
  • 김지수 (고려대학교 기계공학부) ;
  • 김윤재 (고려대학교 기계공학부)
  • Received : 2021.11.15
  • Accepted : 2022.04.11
  • Published : 2022.06.30

Abstract

When wall-thinning in a pipe occurs during operation of nuclear power plant, reinforcement of the pipe needs to be performed. Accordingly, the structural response of the piping system due to introduction of the reinforcement may be re-evaluated. For elastic structural analysis of the piping system with the reinforced pipe using finite element (FE) analysis, the stiffness of the reinforced pipe is needed. In this study, the stiffness matrix of wall-thinned pipe with pad reinforcement or composite reinforcement is analytically derived. The validity of the proposed equations is checked by comparing with systematic finite element (FE) analysis results.

Keywords

Acknowledgement

이 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(No.20206510100030, 가동원전2,3등급 대구경 배관 보수기술 개발)

References

  1. Kim. S. H., Choi. H. S., Jeon. B. G. and Hahm. D. G., 2019, "Low-cycle Fatigue Behaviors of the Elbow in a Nuclear Power Plant Piping System Using the Moment and Deformation Angle," Eng. Fail. Anal., Vol. 96, pp. 348-361. doi:https://doi.org/10.1016/j.engfailanal.2018.10.0 21 
  2. Kim. J. W. and Park. C. Y., 2002, "An Experimental Study on the Evaluation of Failure Behavior of Pipe with Local Wall Thinning," Proc. of ASME 2016 PVP Conference, Vancouver, BC, August 5-9, PVP2002-1258. 
  3. Yamagata, T., Ito, A., Sato, Y. and Fujisawa, N., 2014, "Experimental and Numerical Studies on Mass Transfer Characteristics Behind an Orifice in a Circular Pipe for Application to Pipe-wall Thinning," Exp. Therm. Fluid Sci., Vol. 52, pp. 239-247. doi:https://doi.org/10.1016/j.expthermflusci.2013.09.017 
  4. Peyvandi, A., Soroushian, P. and Jahangirnejad, S., 2013, "Enhancement of the Structural Efficiency and Performance of Concrete Pipes Through Fiber Reinforcement," Constr. Build Mater., Vol. 45, pp. 36-44. doi:https://doi.org/10.1016/j.conbuildmat.2013.03.084 
  5. Fonseca, E.M.M., De Melo, F.J.M.Q. and Oliveira, C.A.M., 2005, "The Thermal and Mechanical Behaviour of Structural Steel Piping Systems" Int. J. Pres. Ves. Pip., Vol. 82, Issue 2, pp. 145-153. doi:https://doi.org/10.1016/j.ijpvp.2004.06.012 
  6. Kim. J. S., Jang. J. H. and Kim. Y. J., 2022, "Efficient Elastic Stress Analysis Method for Piping System with Wall-thinning and Reinforcement", Nucl. Eng. Tech., Vol. 54, pp. 732-740. doi:https://doi.org/10.1016/j.net.2021.08.026 
  7. Chin. W, S, and Lee. D. G., 2006, "Binary Mixture Rule for Predicting the Dielectric Properties of Unidirectional E-glass/epoxy Composite," Compos. Struct., Vol. 74, Issue 2, pp. 153-162. doi: https://doi.org/10.1016/j.compstruct.2005.04.008 
  8. Peng, L. C. and Peng, T. L., 2009, Pipe stress engineering, ASME press, New York. 
  9. ABAQUS Version 2019, 2019, Dassault Systems.