• Title/Summary/Keyword: Wake-Induced Oscillation

Search Result 11, Processing Time 0.022 seconds

Experimental study on wake-induced vibrations of two circular cylinders with two degrees of freedom

  • Du, Xiaoqing;Jiang, Benjian;Dai, Chin;Wang, Guoyan;Chen, Suren
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.57-68
    • /
    • 2018
  • Wind tunnel tests are conducted to investigate wake-induced vibrations of two circular cylinders with a center-to-center spacing of 4 diameters and attack angle varying from $0^{\circ}$ to $20^{\circ}$ for Reynolds numbers between 18,000 and 168,800. Effects of structural damping, Reynolds number, attack angle and reduced velocity on dynamic responses are examined. Results show that wake-induced vortex vibrations of the downstream cylinder occur in a wider range of the reduced velocity and have higher amplitudes in comparison to the vortex-induced vibration of a single circular cylinder. Two types of wake-induced instability phenomena with distinct dynamic characteristics are observed, which may be due to different generation mechanisms. For small attack angles like $5^{\circ}$ and $10^{\circ}$, the instability of the downstream cylinder characterizes a one-degree-of-freedom (1-DOF) oscillation moving in the across-wind direction. For a large attack angle like $20^{\circ}$, the instability characterizes a two-degree-of-freedom (2-DOF) oscillation with elliptical trajectories. For an attack angle of $15^{\circ}$, the instability can transform from the 1-DOF pattern to the 2-DOF one with the increase of the Reynolds number. Furthermore, the two instabilities show different sensitivity to the structural damping. The 1-DOF instability can be either completely suppressed or reduced to an unsteady oscillation, while the 2-DOF one is relatively less sensitive to the damping level. Reynolds number has important effects on the wake-induced instabilities.

A Study on the aerodynamic response of approximated three circular cylinders (근접한 세 원형구조물의 공기역학적 거동에 대한 연구)

  • Choi, Chang Koon;Kim, Yun Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.11-22
    • /
    • 1992
  • It this study, the aerodynamic responses of circular cylinder behind a pair of circular cylinders arranged side by side in a uniform flow were investigated. We confirmed that four types of oscillation are occured on downstream cylinder in such an arrangement. Influenced by upstream cylinders, the amplitude of vortex induced oscillation is increased and wake buffeting occured when S/D(S: distance between the centers of upstream cylinders, D: diameter of cylinder) is smaller than 1.2. When S/D is larger than 1.2, gap flow introduces to oscillation which maintains a uniform amplitude in spite of increasing wind speed. This oscillation is reduced to "wake galloping" if its amplitude exceeds the limit point.

  • PDF

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

A Study on the Installation method of the Spacer Damper for Bundled T/L (송전선로 스페이서댐퍼 적정 설치방안 연구)

  • Lee, H.K.;Sohn, H.K.;Lee, D.I.;Wi, H.B.;Park, W.D.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.436-438
    • /
    • 2003
  • Wind-induced oscillations are known to cause damage to the conductors and related hardware through fatigue, clashing of the bundled conductors and bolt loosening. Wake-induced oscillations have been known since the advent of bundled conductors, they are caused by aerodynamically unstable forces acting on the leeward conductors in the wake of the windward conductors, They take the form of horizontal galloping, snaking or rolling, in which case all subconductors move together in unison. They can also take the form of the subspan oscillation, which appear as elliptical motions of the subconductors moving out of phase, mainly in the horizontal plane within a subspan. In order to decrease amplitudes of the oscillation, this paper examines the application status of the spacer dampers and suggests proper installation methods.

  • PDF

Characteristics of Flow p ast an Oscillating Sphere (진동하는 구를 지 나는 유동의 특성)

  • Lee, Dae-Sung;Yoon, Hyun-Sik;Ha, Man-Yeong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.284-287
    • /
    • 2008
  • Flow over a sphere under forced oscillation at Re=300 is simulated for various frequency ratios which are defined as excitation frequency over natural frequency of stationary sphere. The results of oscillating sphere are compared with those of stationary sphere and an oscillating cylinder. Detailed vortical structures, hydrodynamic forces and frequencies of the wake are prescribed as a function of frequency ratio. For oscillating sphere, planar symmetry of the wake is kept and two nearly symmetric hair pin vortices are induced by oscillation for one period of oscillation when the frequency ratio is bigger than 0.5. Modulation phenomenon which can be found in an oscillating cylinder were not seen for an oscillating sphere.

  • PDF

Field Observation and Analysis of Wind-Induced Vibrations in Four-Bundled Conductor Transmission Lines

  • Sohn, Hong-Kwan;Lee, Hyung-Kwon;Chu, Jang-Hee;Lee, Dong-Il;Lee, Eun-Woong
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.109-114
    • /
    • 2003
  • This paper presents observations made on four-bundled conductor transmission lines concerning the behavior of conductors under the effect of natural winds. To know the wind-induced vibration status and how to control it, wind-induced vibrations have been recorded and analyzed from the real transmission lines. From the field observation and analysis results, subspan oscillation was found to be the main type of vibration. In addition, the data also revealed some common characteristics of the observation sites with high maintenance rates. The results will be used in controlling the subspan oscillations and protecting the conductors.

Vortex induced vibration analysis of a cylinder mounted on a flexible rod

  • Zamanian, Mehdi;Garibaldi, Luigi
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.441-455
    • /
    • 2019
  • In this study, vortex induced vibrations of a cylinder mounted on a flexible rod are analyzed. This simple configuration represents the key element of new conception bladeless wind turbine (Whitlock 2015). In this study the structure oscillations equation coupled to the wake oscillation equation for this configuration are solved using analytical perturbation method, for the first time. An analytical expression that predicts the lock-in phenomena range of wind speed is derived. The discretized equations of motion are also solved using RKF45 numerical method. The equations of motion are discretized by Galerkin method. Free vibration mode shape of the structure taking into account the discontinuity of the cross section are used as comparison function. Numerical results are compared to the analytical results, and they show a satisfying agreement. The effect of system parameters on the oscillations of structure and wake as well as on the lock-in domain are presented. Moreover, it is shown that the values of wind speed triggering the start and the stop of the lock-in phenomenon, for increasing wind speed are different from those values obtained during the reverse process, i.e., when the wind speed decreases.

Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream (가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석)

  • Kim, Jeong-Hu;Yoon, Hyun-Sik;Tuan H.A.;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.

A Study on Flow-Induces Vibration of Tube Array in Uniform Crossflow(I) (균일 유동장내 튜브 배열의 유동관련 진동에 관한 연구 (I))

  • 이기백;김봉환;양장식;김문경;장석상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.924-932
    • /
    • 1992
  • This paper presents the results of an experimental study on the characteristics of the vortex- induced vibration of an elastically supported circular cylinder in the cross air flow. For a range of velocities, power spectral densities of the signals from a hot-wire anemometer placed in the wake of an oscillating circular cylinder and gap sensors placed in the both ends of a circular cylinder were obtained to determine vortex-shedding frequencies, natural frequencies and vibrating frequencies of a cylinder. The effects of slots in the test section on vortex shedding and cylinder oscillation were investigated. The present study covered the reduced velocity range 1.0 .leg. Ur .leg. 64.6. The response characteristics of the cylinder has been shown to vary extensively, depending on the slots in the test section as well as on the reduced velocity. For an elastically supported cylinder, a purely translation mode oscillation was observed at a low velocity, however a rotation mode oscillation was often superposed for higher velocities. These two oscillating frequencies were equal to their natural frequencies irrespective of the changes of free stream velocities.