Browse > Article
http://dx.doi.org/10.12989/was.2019.29.6.441

Vortex induced vibration analysis of a cylinder mounted on a flexible rod  

Zamanian, Mehdi (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University)
Garibaldi, Luigi (Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino)
Publication Information
Wind and Structures / v.29, no.6, 2019 , pp. 441-455 More about this Journal
Abstract
In this study, vortex induced vibrations of a cylinder mounted on a flexible rod are analyzed. This simple configuration represents the key element of new conception bladeless wind turbine (Whitlock 2015). In this study the structure oscillations equation coupled to the wake oscillation equation for this configuration are solved using analytical perturbation method, for the first time. An analytical expression that predicts the lock-in phenomena range of wind speed is derived. The discretized equations of motion are also solved using RKF45 numerical method. The equations of motion are discretized by Galerkin method. Free vibration mode shape of the structure taking into account the discontinuity of the cross section are used as comparison function. Numerical results are compared to the analytical results, and they show a satisfying agreement. The effect of system parameters on the oscillations of structure and wake as well as on the lock-in domain are presented. Moreover, it is shown that the values of wind speed triggering the start and the stop of the lock-in phenomenon, for increasing wind speed are different from those values obtained during the reverse process, i.e., when the wind speed decreases.
Keywords
vortex induced vibration; lock-in; van der Pol wake oscillator; circular cylinder; perturbation method;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Abdul Nariman, N. (2016), "Influence of fluid-structure interaction on vortex induced vibration and lock-in phenomena in long span bridges", Front Struct. Civ. Eng., 10(4), 363-384. https://doi.org/10.1007/s11709-016-0353-y.   DOI
2 Bearman, P.W. (1984), "Vortex shedding from oscillating bluff Bodies", Annu. Rev. Fluid Mech., 16, 195-222.   DOI
3 Bernitsas, M. M., Raghavan, K., Ben-Simon, Y. and Garcia, E.M.H. (2008), "VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow", J. Offshore Mech. Arct., 130(4), 041101-15. https://doi.org/10.1115/1.2957913.   DOI
4 Blevins, R.D. (1990), Flow-Induced Vibration, (2th Ed.), Van Nostrand Reinhold, New York.
5 Chaplin, J.R., Bearman, P.W., Huera Huarte, F.J. and Pattenden, R.J. (2005), "Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current", J. Fluid Struct., 21(1), 3-24. https://doi.org/10.1016/j.jfluidstructs.2005.04.010.   DOI
6 Chizfahm, A., Azadi Yazdi, E. and Eghtesad, M. (2018), "Dynamic modeling of vortex induced vibration wind turbines", Renew Energ, 121(1), 632-643. https://doi.org/10.1016/j.renene.2018.01.038.   DOI
7 Dai, H.L, Yang, Y.W., Abdelkefi, A. and Wang, L. (2018), "Nonlinear analysis and characteristics of inductive galloping energy harvesters", Commun. Nonlinear Sci. Numer. Simulat, 59(1), 580-591. https://doi.org/10.1016/j.cnsns.2017.12.009.   DOI
8 Dai, H.L., Abdelkefi, A. and Wang, L. (2014), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam, 77(3) 967-981. https://doi.org/10.1007/s11071-014-1355-8.   DOI
9 Abdelkefi, A., Yan, Z. and Hajj, M.R. (2013), "Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping", Smart Mater Struct., 22(1), 025016.   DOI
10 Xu, W., Wu, Y., Zeng, X., Zhong, X. and Yu, J. (2010), "A new wake oscillator model for predicting vortex induced vibration of a circular cylinder", J. Hydrodyn., 22(3), 381-386. https://doi.org/10.1016/S1001-6058(09)60068-8.   DOI
11 Zhang, L.B., Dai, H.L., Abdelkefi, A. and Wang, L. (2019), "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections", Energy, 167(15), 970-981. https://doi.org/10.1016/j.energy.2018.11.059.   DOI
12 Griffin, O.M., Skop, R.A. and Koopmann, G.H. (1973), "The vortex-excited resonant vibrations of circular cylinders", J Sound Vib, 31(2), 235-249. https://doi.org/10.1016/S0022-460X(73)80377-3.   DOI
13 de Langre, E. (2006) , "Frequency lock-in is caused by coupledmode flutter", J. Fluid Struct., 22(6-7), 783-791. https://doi.org/10.1016/j.jfluidstructs.2006.04.008.   DOI
14 Facchinetti, M.L., de Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", J Fluid Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004,   DOI
15 Facchinetti, M.L., de Langre, E. and Biolley, F. (2004), "Vortexinduced travelling waves along a cable", Eur. J. Mech. B-Fluid., 23(1), 199-208. https://doi.org/10.1016/j.euromechflu.2003.04.004.   DOI
16 Farshidianfar, A. and Zanganeh, H. (2010), "A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio", J. Fluid Struct., 26(3), 430-441. https://doi.org/10.1016/j.jfluidstructs.2009.11.005.   DOI
17 Gao, X., Xu, W., Bai, Y. and Zhu, H. (2018), "A novel wake oscillator model for vortex-induced vibrations prediction of a cylinder considering the influence of Reynolds number", China Ocean Eng., 32(2), 132-143. https://doi.org/10.1007/s13344-018-0015-z.   DOI
18 Ji, C., Peng, Z., Mahbub Alam, M., Chen, W. and Xu, D. (2018), "Vortex-induced vibration of a long flexible cylinder in uniform cross-flow", Wind Struct., 26(5), 267-277. https://doi.org/10.12989/was.2018.26.5.267.   DOI
19 Jia, J., Shan, X., Upadrashta, D., Xie, T., Yang, Y. and Song, R. (2018), "Modeling and analysis of upright piezoelectric energy harvester under aerodynamic vortex-induced vibration", Micromachines, 9(1), 667(19pp). https://doi.org/10.3390/mi9120667.   DOI
20 Keber, M. and Wiercigroch, M.A. (2007), "reduced order model for vortex-induced vibration of a vertical offshore riser in lock-in", IUTAM Symposium on Fluid-Structure Interaction in Ocean, Humburg, Germany.
21 Ogink, R.H.M. and Metrikine, A.V. (2010), "A wake oscillator with frequency dependent coupling for the modeling of vortexinduced vibration", J. Sound Vib., 329(26), 5452-5473. https://doi.org/10.1016/j.jsv.2010.07.008.   DOI
22 Leblond, A. and Hardy, C. (2005), "Unifying calculation of vortex-induced vibrations of overhead conductors", Wind Struct. , 8(2), 79-88. http://dx.doi.org/10.12989/was.2005.8.2.079.   DOI
23 Leclercq, T. and de Langre, E. (2018), "Vortex-induced vibrations of cylinders bent by the flow", J. Fluid Struct., 80(1), 77-93. https://doi.org/10.1016/j.jfluidstructs.2018.03.008.   DOI
24 Mathelin, L. and de Langre, E. (2005), "Vortex-induced vibrations and waves under shear flow with a wake oscillator model", Eur. J. Mech. B-Fluid., 24(4), 478-490. https://doi.org/10.1016/j.euromechflu.2004.12.005.   DOI
25 Postnikov, A., Pavlovskaia, E. and Wiercigroch, M. (2017), "2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations", Int. J. Mech. Sci., 127(1), 176-190. https://doi.org/10.1016/j.ijmecsci.2016.05.019.   DOI
26 Qu, Y. and Metrikine, A.V. (2016), "A wake oscillator model with nonlinear coupling for the VIV of rigid cylinder constrained to vibrate in the cross flow direction", Proceedings of the 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, South Korea.
27 Skop, R.A. and Griffin, O.M. (1973), "A model for the vortexexcited resonant response of bluff cylinders", J. Sound Vib., 27(2), 225-233.   DOI
28 Salvador, C.S., Teresa, J.A., Martinez, J.M., Bacasnot, M.C., Orilla, K.V., Cabana, R.J. and Ladaran, W.I. (2017), "design and construction of arc shaped and disc shaped pendulum for vortex bladeless wind generator", Proceedings of the 25th International Conference on Systems Engineering, Las Vegas, USA.
29 Skop, R.A. and Balasubramanian, S. (1997), "A new twist on an old model for vortex-excited vibrations", J. Fluid Struct., 11(4), 395-412. https://doi.org/10.1006/jfls.1997.0085.   DOI
30 Kurushina, V. and Pavlovskaia, E. (2017), "Wake oscillator equations in modeling vortex-induced vibrations at low mass ratios", OCEANS 2017, Aberdeen, UK.
31 Skop, R.A. and Luo, G. (2001), "An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows", J. Fluid Struct., 15(6), 867-884. https://doi.org/10.1006/jfls.2000.0381.   DOI
32 Song, R., Shan, X., Lv, F. and Xie, T. (2015), "A study of vortexinduced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension", Ceram Int., 41(1), 768-773. https://doi.org/10.1016/j.ceramint.2015.03.262.
33 Sun, Y., Li, M. and Liao, H. (2013), "Investigation on vortexinduced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests", Wind Struct., 17(6), 565-587. https://doi.org/10.12989/was.2013.17.6.565.   DOI
34 Wang, D., Chen, Y., Wiercigroch, M. and Cao, Q. (2016), "Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices", Appl. Math. Mech., 37(9), 1251-1274. https://doi.org/10.1007/s10483-016-2128-6.   DOI
35 Vandiver, J.K., Jaiswal, V. and Jhingran, V. (2009), "Insights on vortex-induced, traveling waves on long risers", J. Fluid Struct., 25(4), 641-653. https://doi.org/10.1016/j.jfluidstructs.2008.11.005.   DOI
36 Violette, R., de Langre, E. and Szydlowski, J. (2007), "Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments", Comput. Struct., 85(11-14), 1134-1141. https://doi.org/10.1016/j.compstruc.2006.08.005.   DOI
37 Wang, D., Chen, Y., Wiercigroch, M. and Cao, Q. (2016), "A three-degree-of-freedom model for vortex-induced vibrations of turbine blades", Meccanica, 51(11), 2607-2628. https://doi.org/10.1007/s11012-016-0381-7.   DOI
38 Whitlock, R. (2015), The Power of the Vortex: an Interview, Renewable energy magazine, April.