
 
 

 

1. Introduction 
 
Multiphase flow, particle transport and particle-laden 

flow have wide engineering applications such as 
combustion, chemical reaction and environmental control. 
Particles are usually modeled as a sphere and those particles 
translate, rotate and oscillate in the fluid. While there are 
lots of studies on the translating and rotating sphere, an 
oscillating sphere has been outside of researchers’ interests. 
To the best of author’ knowledge, only a few studies on 
oscillating sphere can be found. Govardhan & Williamson 
[1][2] investigated vortex induced motions of tethered 
sphere. Tethered sphere is applicable to marine buoys and 
underwater mines. They constrained free motions of sphere 
in one or two directions. Within a particular range of flow 
speeds, where the oscillation frequency is of the order of 
the static-body vortex shedding frequency, there exist two 
modes of periodic large-amplitude oscillation, defined as 
modes I and II, separated by a transition regime exhibiting 
non-periodic vibration. The dominant wake structure for 
both modes is a chain of streamwise vortex loops on 
alternating sides of the wake. Further downstream, the 
heads of the vortex loops pinch off to form a sequence of 
vortex rings. 

 
2. Numerical method 

 
2.1 Governing equations 

 
The governing equations describing instantaneous 

incompressible viscous flow in a dimensionless form are 
given by the continuity and the momentum equations as 
follows; 
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where if  is momentum forcing for both of direct and 
feedback IBM and q is mass sink/source for immersed 
boundary method [3]. 

The equations are discretized on non-staggered Cartesian 
grids. A second-order accurate finite volume method is used 
in the present study where the second-order two-step 
fractional step method is employed for time advancement. 
The convection terms are treated explicitly using 
third-order Adams-Bashforth scheme and diffusion terms 
are treated implicitly using Crank-Nicolson scheme. 

 
2.2 Computational details 

 
Fig. 1 shows computational domain and boundary 

conditions for both of stationary and oscillatory sphere. 
Dirichlet conditions are used for the inlet, top and bottom 
walls. And convective outflow is applied to the outlet. 

 

 
 

Figure 1. Computational domain and boundary 
conditions for a stationary and oscillating sphere 
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Abstract 
 
Flow over a sphere under forced oscillation at Re=300 is simulated for various frequency ratios which are defined as excitation 
frequency over natural frequency of stationary sphere. The results of oscillating sphere are compared with those of stationary sphere 
and an oscillating cylinder. Detailed vortical structures, hydrodynamic forces and frequencies of the wake are prescribed as a function 
of frequency ratio. For oscillating sphere, planar symmetry of the wake is kept and two nearly symmetric hair pin vortices are induced 
by oscillation for one period of oscillation when the frequency ratio is bigger than 0.5. Modulation phenomenon which can be found in 
an oscillating cylinder were not seen for an oscillating sphere. 
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 (a) 0.4e of f =  

 (b) 0.5e of f =  

 (c) 0.6e of f =  

 (d) 0.8e of f =  

 (e) 1.0e of f =  

 (f) 1.2e of f =  

 (g) 1.4e of f =  

 (h) 1.6e of f =  

 (i) 2.0e of f =  

 (j) 3.0e of f =  
 

Figure 2 Instantaneous vortical structures at x z−  
plane. 
 
Domain size are 15 25x− ≤ ≤ , 20 20y− ≤ ≤  and 

20 20z− ≤ ≤  and grid numbers are 300, 192 and 192 for x, 
y and z direction. Near the sphere, uniform grid 
( 0.01666x y∆ = ∆ = ) is used.  
 
3. Results 

 
Natural vortex shedding frequency of stationary sphere at 

Re 300=  is 0.134 from present simulation and this 
frequency is designated as a reference frequency, of  for 
the sphere oscillation. Amplitude is fixed as 0.2 same as the 
cylinder oscillation and frequencies are between 0.3 and 3.0  

 
3.1 Planar symmetry  

 
Stationary sphere has planar symmetric wake at 

210 Re 375≤ ≤ .[4] It seems natural that a sphere which is 
oscillating in one direction has planar symmetry about 
x y−  plane at Re 300=  as oscillation strengthens the 
spanwise coherence.  

Fig. 2 shows instantaneous vortical structures of 
oscillating sphere at various frequency ratios and Reynolds 
numbers at x z−  plane. The oscillating sphere shows 
planar symmetry for 0.6e of f ≥ . For rather low 
frequency ratios, e of f =0.5 and 0.4 at Re 300= , the 
wake is not planar symmetric anymore. At e of f =0.4 
shown in Fig. 2(a), the vortical structures are similar to that 
of stationary sphere as they look like near planar symmetric 
about arbitrary x Y− plane. But, the vortical  

 

 

 

 

 
 
Figure 3 Time series of vortical structures of flow over a 

sphere at 0.4e of f =  and Re 300=  
 

legs are twisted. For e of f =0.5, the vortical structure is 
very complicated and shedding is not clear. From 

0.6e of f = , the planar symmetry becomes clear  and the 
streamwise vortex length that is attached to the sphere 
decreases and envelopes that are surrounding the oscillating 
sphere tend to be smaller as the frequency ratio is increased. 
The shape of rupture at low frequency ratios evolves from a 
hole and then the hole is getting bigger as the part of the 
envelope advected away and finally the envelope is torn 
into two vertical legs. But, for higher frequency ratios, the 
hole evolves not in streamwise but spanwise direction, so, 
the envelope is convected away without separation.  

 
3.2 Vortical structure 
  

Fig. 3 shows time series of vortical structure of flow past 
an oscillating sphere at e of f =0.4. The flow is not planar 
symmetric as already mentioned. The flow is not periodic 
for one sphere oscillation ( 0 360φ≤ ≤o o ) as first three 
vortical structures are different from second figures for 

0 , 30 , 60φ = o o o . As shown in Fig. 3, the hairpin vortex is at 
the connections of upper vortex legs and lower vortex legs 
as shown in Fig. 3 for second 0 , 30 , 60φ = o o o . As the 
oscillation frequency decreases to 0.4e of f = , vortical 
legs are twisted. For stationary sphere, rupture in envelop 
and hairpin vortex are in same direction, but for 

0.4e of f = , they orient different directions. So, the 
vortical legs are twisted. 

 
Fig. 4 shows time series of vortical structure of flow past 

an oscillating sphere at e of f =0.8. Generally, the vortical  

( ) 0a φ = o ( ) 30b φ = o ( ) 60c φ = o

( ) 90d φ = o

( ) 180g φ = o

( ) 270j φ = o

( ) 0m φ = o ( ) 30n φ = o ( ) 60o φ = o

( ) 300k φ = o ( ) 330l φ = o

( ) 210h φ = o ( ) 240i φ = o

( ) 120e φ = o ( ) 150f φ = o
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Figure 4 Time series of vortical structures of flow 

over a sphere at 0.8e of f =  and Re 300=  
 

structures for e of f =0.8 is similar to those of stationary 
cylinder. The lower and upper vortical structures are 
developing alternatively while flowing downstream. As the 
sphere is oscillating in y -direction, the vortical structures 
are elongated in y -direction comparing with those of 
stationary sphere. Instantaneous vortical structure for 

0φ =  is shown in Fig. 4(a). Lower vortical legs are 
developing attached to the vortical structure enveloping the 
sphere. The lower legs are elongated more as the sphere 
goes up while upper legs advect with nearly unchanged 
length for 30 ~ 90φ = o o  as shown in Fig. 4(b), (c) and (d). 
After sphere past an extreme upper position, 90φ = o , the 
enveloping structure is developing in the upper side, flat 
envelop experiences rupture and separation into new upper 
vortical legs. These processes occur for 120 ~ 180φ =  as 
shown in Fig. 4(e), (f) and (g). The developing process 
looks similar to that of the upper legs of stationary sphere. 
The shape of torn envelope differs from that of stationary 
sphere and this results in different head shapes. Now the 
upper structure is developing as the sphere goes down for 

180φ = o  and 210o . In Fig. 4(j), the lower part of the 
envelope is now extending as happened at the upper side of 
the sphere in Fig. 4(e). While the stationary sphere has only 
one rupture of the envelope in one natural vortex shedding 
period, oscillating sphere experiences twice in one 
oscillation period. That means ruptures occur at the top side 
and bottom side alternatively. Also, Fig. 4(k) and (l) are 
similar to the upside-down structures of Fig. 4(f) and (g). 

 
Fig. 5 shows time series of vortical structure of flow past 

an oscillating sphere at e of f =1.0. General patterns are 
similar to those of the case for e of f =0.8. The hairpin 
vortex can be seen clearly in Fig. 5(h). The rupture of the 
enveloping structure is similar to that of stationary sphere. 
A hole is growing in the mid of the envelope and torn 

envelope develops as vortical legs in Fig. 5(f), (g) and (h).  
 
Fig. 6 shows time series of vortical structure of flow past 

an oscillating sphere at e of f =3.0, super harmonic 
frequency. The hole in the envelope for 90φ = o  is seen 
and then develops in azimuthal direction for 120φ = o . A 
band-shaped structure from envelope advects away from 
the sphere and shape is almost unchanged. As they are 
advected, they became hairpin-vortex-like structures. They 
have two pairs of vortex legs in the near wake and one pair 
diminishes as they flow downstream. The head of vortex 
loop is curved backward (to sphere) unlikely stationary or 
other oscillating spheres at lower frequency ratios. 

 

 

 

 

 
 

Figure 5 Time series of vortical structures of flow over a 
sphere at 1.0e of f =  and Re 300=  

 

 

 

 

 
 
Figure 6 Time series of vortical structures of flow 

over a sphere at 3.0e of f =  and Re 300=  
 

( ) 0a φ = o ( ) 30b φ = o ( ) 60c φ = o

( ) 90d φ = o

( ) 180g φ = o

( ) 270j φ = o ( ) 300k φ = o ( ) 330l φ = o

( ) 210h φ = o ( ) 240i φ = o

( ) 120e φ = o ( ) 150f φ = o

( ) 0a φ = o ( ) 30b φ = o ( ) 60c φ = o

( ) 90d φ = o ( ) 120e φ = o ( ) 150f φ = o

( ) 180g φ = o

( ) 270j φ = o ( ) 300k φ = o ( ) 330l φ = o

( ) 210h φ = o ( ) 240i φ = o

( ) 0a φ = o ( ) 30b φ = o ( ) 60c φ = o

( ) 90d φ = o ( ) 120e φ = o ( ) 150f φ = o

( ) 180g φ = o ( ) 210h φ = o ( ) 240i φ = o

( ) 270j φ = o ( ) 300k φ = o ( ) 330l φ = o
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4. Conclusions 
 

Flow past oscillating cylinders and a sphere is simulated 
using immersed boundary methods.  

 
There are several parameters to determine sphere 

oscillation, such as oscillation amplitude, frequency ratio 
and Reynolds number. In this study, amplitude is set as 0.2 
and several frequency ratios near sub-harmonic and 
harmonic frequency and Reynolds number was selected as 
300.  

Although the oscillating sphere has two vortex sheddings 
in both directions, wake is not symmetric. Modulation 
phenomenon of oscillating cylinder does not appear for 
oscillating sphere. This may be related to the asymmetry of 
the wake of oscillating sphere.  

At Re 300= , stationary sphere has planar-symmetric 
wake. This is kept when the sphere is oscillating. But, at 

low frequency ratio 0.5e of f ≤ , planar symmetry is lost..  
    
References 
 
[1] Govardhan, R. N., & Williamson, C. H. K., 1997, 

“Vortex-induced motions of a tethered sphere,” Journal 
of Wind Engineering and Industrial Aerodynamics, vol. 
69-71, pp. 375-385 

[2] Govardhan, R. N., & Williamson, C. H. K., 2005, 
“Vortex-induced vibrations of a sphere,” Jornal of Fluid 
Mechanics, vol. 531, pp. 11-47.  

[3] Kim, J., Kim, D. & Choi, H., 2001, “An immersed 
boundary finite-volume method for simulation of flow 
in complex geometries,” Journal of computational 
physics, vol. 171, pp. 132-150. 

[4] Mittal, R., 1999, “Planar symmetry in the unsteady 
wake of a sphere,” AIAA J. vol. 37, pp. 388-390 

 

 

287




