• Title/Summary/Keyword: Wafer shear stress

Search Result 10, Processing Time 0.031 seconds

Hydrodynamic Pressure and Shear Stress in Chemical Mechanical Polishing (화학기계적연마 공정의 윤활역학적 압력 및 전단응력 분포 해석)

  • 조철호;박상신;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-184
    • /
    • 2000
  • Chemical Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active and abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves hydrodynamic behavior. The liquid slurry is trapped between the work piece and pad forming a hydrodynamic film. For the first step to understand material removal mechanism of the CMP process, the hydrodynamic analysis is done with semiconductor wafer. Three-dimensional Reynolds equation is applied to get pressure distribution of the slurry film. Shear stress distributions on the wafer surface are also analyzed

  • PDF

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

Optimization of Groove Sizing in CMP using CFD (CFD를 이용한 CMP의 Groove Sizing 최적화)

  • Jang, Ji-Hwan;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1522-1527
    • /
    • 2004
  • In this paper, slurry fluid motion, abrasive particle motion, and effects of groove sizing on the pads are numerically investigated in the 2D geometry. Groove depth is optimized in order to maximized the abrasive effect. The simulation results are analyzed in terms of shear stress on pad, groove and wafer, streamline and velocity vector. The change of groove depth entails vortex pattern change, and consequently affects material removal rate. Numerical analysis is very helpful for disclosing polishing mechanism and local physics.

  • PDF

Application of Laser Interferometry for Assessment of Surface Residual Stress by Determination of Stress-free State (무잔류 응력상태 결정을 통한 표면 잔류응력장 평가에의 레이저 간섭계 적용)

  • 김동원;이낙규;나경환;권동일
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.35-40
    • /
    • 2004
  • The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using electronic speckle pattern interferometry (ESPI). The residual stress fields in case of both single and film / substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 $\mu\textrm{m}$ Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the x-ray diffractometer (XRD) for the verification of above residual stress results by ESPI...

  • PDF

Application of Laser Interferometry for Assessment of Surface Residual Stress by Determination of Stress-free State (무잔류 응력상태 결정을 통한 표면 잔류응력장 평가에의 레이저 간섭계 적용)

  • Kim, Dong-Won;Lee, Nak-Kyu;Choi, Tae-Hoon;Na, Kyong-Hoan;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.25-30
    • /
    • 2003
  • The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using electronic speckle pattern interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 ${\mu}m$ Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the x-ray diffractometer (XRD) for the verification of above residual stress results by ESPI.

  • PDF

Effect of Slurry Flow in Spray Slurry Nozzle System on Cu CMP (스프레이 슬러리 노즐 시스템에서 슬러리 유동이 Cu CMP에 미치는 영향)

  • Lee, Da Sol;Jeong, Seon Ho;Lee, Jong Woo;Jeong, Jin Yeop;Jeong, Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • The chemical mechanical planarization (CMP) process combines the chemical effect of slurry with the mechanical effect of abrasive (slurry)-wafer-pads The slurry delivery system has a notable effect on polishing results, because the slurry distribution is changed by the supply method. Thus, the investigation of slurry pumps and nozzles with regard to the slurry delivery system becomes important. This paper investigated the effect of a centrifugal slurry pump on a spray nozzle system in terms of uniform slurry supply under a rotating copper (Cu) wafer, based on experimental results and computational fluid dynamics (CFD). In conventional tools, the slurry is unevenly and discontinuously supplied to the pad, due to a pulsed flow caused by the peristaltic pump and distributed in a narrow area by the tube nozzle. Adopting the proposed slurry delivery system provides a higher uniformity and lowered shear stress than usual methods. Therefore, the newly developed slurry delivery system can improve the CMP performance.

A Study on The Burr Minimization by The Chemical Mechanical Micro Machining(C3M) (화학 기계적 미세 가공기술에 의한 버 최소화에 관한 연구)

  • Lee, Hyeon-U;Park, Jun-Min;Jeong, Sang-Cheol;Jeong, Hae-Do;Lee, Eung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.177-184
    • /
    • 2001
  • C3M(chemical mechanical micro machining) is applied for diminishing the size of burr and fabricating the massless patterning for aluminium wafer(thickness of 1${\mu}m$). It is difficult to perform the micro size machining with the radically increased shear stress. While the miniaturization and function-orientation of parts has been needed in the many field such as electronics, optics and medicine. etc., it is not enough to satisfy the industry needs in the machining technology. In this paper feasibility test of diminishing burr and fabricating maskless pattern was experimented and analyzed. In the experiment oxide layer was farmed on the aluminium with chemical reaction by ${HNO_3}$(10wt%), then the surface was grooved with tungsten carbide tool for the different condition such as the load and fred rate. The result was compared with the conventional machining to show the improvement of C3M with SEM for burr diminish and XPS for atomic existence, AFM for more precise image.

  • PDF

Numerical Study on Polishing Behavior during Oxide CMP (Oxide CMP 과정에 대한 수치 유동 해석)

  • Kwon, Dal-Jung;Lee, Do-Hyung;Hong, Yi-Koan;Park, Jin-Goo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.922-927
    • /
    • 2003
  • In this paper, slurry fluid motion, abrasive particle motion, and roles of groove patterns on the pads are numerically investigated in the 2D and 3D geometries. The simulation results are analyzed in terms of experimental removal rate and WIWNU (within wafer non-uniformity) for ILD (inter level dielectric) CMP process. Numerical investigations reveal that the grooves in the pad behave as uniform distributor of abrasive particles and enhance the removal rate by increasing shear stress. Higher removal rate and desirable uniformity are numerically and experimentally observed at the pad with grooves. Numerical analysis is very well matched with experimental results and helpful for understanding polishing mechanism and local physics.

  • PDF

Numerical Study on Polishing Behavior During Oxide CMP (Oxide CMP과정에 대한 수치 운동 해석)

  • Kwon Daljung;Kim Inhwan;Lee Dohyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.435-440
    • /
    • 2005
  • In this paper, slurry fluid motion, abrasive particle motion, and roles of groove patterns on the pads are numerically investigated in the 2D and 3D geometries. The simulation results are analyzed in terms of experimental removal rate and WIWNU (Within Wafer Non-Uniformity) for ILD (Inter Level Dielectric) CMP process. Numerical investigations reveal that the grooves in the pad behave as uniform distributor of abrasive particles and enhance the removal rate by increasing shear stress. Higher removal rate and desirable uniformity are numerically and experimentally observed at the pad with grooves. Numerical analysis is very well matched with experimental results and helpful fur understanding polishing mechanism and local physics.

Fabrication of a Pressure Difference Type Gas Flow Sensor using ICP-RIE Technology (ICP-RIE 기술을 이용한 차압형 가스유량센서 제작)

  • Lee, Young-Tae;Ahn, Kang-Ho;Kwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we fabricated pressure difference type gas flow sensor using only dry etching technology by ICP-RIE(inductive coupled plasma reactive ion etching). The sensor's structure consists of a common shear stress type piezoresistive pressure sensor with an orifice fabricated in the middle of the sensor diaphragm. Generally, structure like diaphragm is fabricated by wet etching technology using TMAH, but we fabricated diaphragm by only dry etching using ICP-RIE. To equalize the thickness of diaphragm we applied insulator($SiO_2$) layer of SOI(Si/$SiO_2$/Si-sub) wafer as delay layer of dry etching. Size of fabricated diaphragm is $1000{\times}1000{\times}7\;{\mu}m^3$ and overall chip $3000{\times}3000{\times}7\;{\mu}m^3$. We measured the variation of output voltage toward the change of gas pressure to analyze characteristics of the fabricated sensor. Sensitivity of fabricated sensor was relatively high as about 1.5mV/V kPa at 1kPa full-scale. Nonlinearity was below 0.5%F.S. Over-pressure range of the fabricated sensor is 100kPa or more.

  • PDF