• Title/Summary/Keyword: Wafer Stacking

Search Result 56, Processing Time 0.029 seconds

A Study on Electrostatic Chuck Cooling by Ceramic Dielectric Material and Coolant path (세라믹 유전체 물질과 냉매 유로 형상에 따른 정전척 냉각에 관한 연구)

  • Kim, Daehyeon;Kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.85-89
    • /
    • 2018
  • Temperature uniformity of a wafer in a semiconductor process is a very important factor that determines the overall yield. Therefore, it is very important to confirm the temperature characteristics of the chuck surface on which the wafer is lifted. The temperature characteristics of the chuck depend on the external heat source, the shape of the cooling channel inside the chuck, the material on the chuck surface, and so on. In this study, CFD confirms the change of temperature characteristics according to the stacking order of ceramic materials and inner coolant path on the chuck surface. Finally this study suggests the best cooling condition of electrostatic chuck.

Microstructural investigation of the electroplating Cu thin films for ULSI application (ULSI용 Electroplating Cu 박막의 미세조직 연구)

  • 박윤창;송세안;윤중림;김영욱
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.267-272
    • /
    • 2000
  • Electroplating Cu was deposited on Si(100) wafer after seed Cu was deposited by sputtering first. TaN was deposited as a diffusion barrier before depositing the seed Cu. Electroplating Cu thin films show highly (111)-oriented microstructure for both before and after annealing at $450^{\circ}C$ for 30min and no copper silicide was detected in the same samples, which indicates that TaN barrier layer blocks well the Cu diffusion into silicon substrate. After annealing the electroplating Cu film up to $450^{\circ}C$, the Cu film became columnar from non-columnar, its grain size became larger about two times, and also defects density of stacking faults, twins and dislocations decreased greatly. Thus the heat treatment will improve significantly electromigration property caused by the grain boundary in the Cu thin films.

  • PDF

Estimation of mechanical damage by minority carrier recombination lifetime and near surface micro defect in silicon wafer (실리콘 웨이퍼에서 소수 반송자 재결합 수명과 표면 부위 미세 결함에 의한 기계적 손상 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.157-161
    • /
    • 1999
  • We investigated the effect of mechanical back side damage in Czochralski silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductance decay ($\mu$-PCD) technique, wet oxidation/preferential etching methods, near surface micro defect (NSMD) analysis, and X-ray section topography. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and NSMD density increased proportionally, also correlated to the oxidation induced stacking fault (OISF) density. Thus, NSMD technique can be used separately from conventional etching method in OISF measurement.

  • PDF

TSV Filling Technology using Cu Electrodeposition (Cu 전해도금을 이용한 TSV 충전 기술)

  • Kee, Se-Ho;Shin, Ji-Oh;Jung, Il-Ho;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

Characteristic Study for Defect of Top Si and Buried Oxide Layer on the Bonded SOI Wafer (Bonded SOI wafer의 top Si과 buried oxide layer의 결함에 대한 연구)

  • Kim Suk-Goo;Paik Un-gyu;Park Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.413-419
    • /
    • 2004
  • Recently, Silicon On Insulator (SOI) devices emerged to achieve better device characteristics such as higher operation speed, lower power consumption and latch-up immunity. Nevertheless, there are many detrimental defects in SOI wafers such as hydrofluoric-acid (HF)-defects, pinhole, islands, threading dislocations (TD), pyramid stacking faults (PSF), and surface roughness originating from quality of buried oxide film layer. Although the number of defects in SOI wafers has been greatly reduced over the past decade, the turn over of high-speed microprocessors using SOI wafers has been delayed because of unknown defects in SOI wafers. A new characterization method is proposed to investigate the crystalline quality, the buried oxide integrity and some electrical parameters of bonded SOI wafers. In this study, major surface defects in bonded SOI are reviewed using HF dipping, Secco etching, Cu-decoration followed by focused ion beam (FIB) and transmission electron microscope (TEM).

A Study on Wafer-Level 3D Integration Including Wafer Bonding using Low-k Polymeric Adhesive (저유전체 고분자 접착 물질을 이용한 웨이퍼 본딩을 포함하는 웨이퍼 레벨 3차원 집적회로 구현에 관한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy;Gutmann, Ronald
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.466-472
    • /
    • 2007
  • A technology platform for wafer-level three-dimensional integration circuits (3D-ICs) is presented, and that uses wafer bonding with low-k polymeric adhesives and Cu damascene inter-wafer interconnects. In this work, one of such technical platforms is explained and characterized using a test vehicle of inter-wafer 3D via-chain structures. Electrical and mechanical characterizations of the structure are performed using continuously connected 3D via-chains. Evaluation results of the wafer bonding, which is a necessary process for stacking the wafers and uses low-k dielectrics as polymeric adhesive, are also presented through the wafer bonding between a glass wafer and a silicon wafer. After wafer bonding, three evaluations are conducted; (1) the fraction of bonded area is measured through the optical inspection, (2) the qualitative bond strength test to inspect the separation of the bonded wafers is taken by a razor blade, and (3) the quantitative bond strength is measured by a four point bending. To date, benzocyclobutene (BCB), $Flare^{TM}$, methylsilsesquioxane (MSSQ) and parylene-N were considered as bonding adhesives. Of the candidates, BCB and $Flare^{TM}$ were determined as adhesives after screening tests. By comparing BCB and $Flare^{TM}$, it was deduced that BCB is better as a baseline adhesive. It was because although wafer pairs bonded using $Flare^{TM}$ has a higher bond strength than those using BCB, wafer pairs bonded using BCB is still higher than that at the interface between Cu and porous low-k interlevel dielectrics (ILD), indicating almost 100% of bonded area routinely.

Cu/SiO2 CMP Process for Wafer Level Cu Bonding (웨이퍼 레벨 Cu 본딩을 위한 Cu/SiO2 CMP 공정 연구)

  • Lee, Minjae;Kim, Sarah Eunkyung;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.47-51
    • /
    • 2013
  • Chemical mechanical polishing (CMP) has become one of the key processes in wafer level stacking technology for 3D stacked IC. In this study, two-step CMP process was proposed to polish $Cu/SiO_2$ hybrid bonding surface, that is, Cu CMP was followed by $SiO_2$ CMP to minimize Cu dishing. As a result, Cu dishing was reduced down to $100{\sim}200{\AA}$ after $SiO_2$ CMP and surface roughness was also improved. The bonding interface showed no noticeable dishing or interface line, implying high bonding strength.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

gate stack구조를 이용한 LTPS TFT의 전기적 특성 분석

  • Jeon, Byeong-Gi;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.59-59
    • /
    • 2009
  • The efficiency of CMOS technology has been developed in uniform rate. However, there was a limitation of reducing the thickness of Gate-oxide since the thickness of Gate Dielectric is also reduced so an amount of leakage current is grow. In order to solve this problem, the semiconductor device which has a dual gate is used widely. This paper presents a method and a necessity for making the Gate Stack of TFT. Before Using test devices to measure values, stacking $SiN_x$ on a wafer test was conducted.

  • PDF