• 제목/요약/키워드: Wafer Bonding

검색결과 305건 처리시간 0.028초

삼차원집적공정에서 원자현미경을 활용한 Wafer Bonding Strength 측정 방법의 신뢰성에 관한 연구 (Reliable Measurement Methodology of Wafer Bonding Strength in 3D Integration Process Using Atomic Force Microscopy)

  • 최은미;표성규
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.11-15
    • /
    • 2013
  • The wafer bonding process becomes a flexible approach to material and device integration. The bonding strength in 3-dimensional process is crucial factor in various interface bonding process such as silicon to silicon, silicon to metals such as oxides to adhesive intermediates. A measurement method of bonding strength was proposed by utilizing AFM applied CNT probe tip which indicated the relative simplicity in preparation of sample and to have merit capable to measure regardless type of films. Also, New Tool was utilized to measure of tip radius. The cleaned $SiO_2$-Si bonding strength of SPFM indicated 0.089 $J/m^2$, and the cleaning result by RCA 1($NH_4OH:H_2O:H_2O_2$) measured 0.044 $J/m^2$, indicated negligible tolerance which verified the possibility capable to measure accurate bonding strength. And it could be confirmed the effective bonding is possible through SPFM cleaning.

폴리머를 이용한 CIS(CMOS Image Sensor) 디바이스용 웨이퍼 레벨 접합의 warpage와 신뢰성 (A Reliability and warpage of wafer level bonding for CIS device using polymer)

  • 박재현;구영모;김은경;김구성
    • 마이크로전자및패키징학회지
    • /
    • 제16권1호
    • /
    • pp.27-31
    • /
    • 2009
  • 본 논문에서는 웨이퍼 레벨 기술을 이용한 CIS용 폴리머 접합 기술을 연구하고 접합 후의 warpage 분석과 개별 패키지의 신뢰성 테스트를 수행하였다. 균일한 접합 높이를 유지하기 위하여 glass 웨이퍼 상에 dam을 형성하고 접합용 폴리머 층을 patterning하여 Si과 glass 웨이퍼의 접합 테스트를 수행하였다. Si 웨이퍼의 접합온도, 접합 압력 그리고 접합 층이 낮을수록 warpage 결과가 감소하였으며 접합시간과 승온 시간이 짧을수록 warpage 결과가 증가하는 것을 확인하였다. 접합 된 웨이퍼를 dicing 하여 각 개별 칩 단위로 TC, HTC, Humidity soak의 신뢰성 테스트를 수행하였으며 warpage 결과가 패키지의 신뢰성 결과에 미치는 영향은 미비한 것으로 확인되었다.

  • PDF

높은 열처리 온도를 갖는 GOI 웨이퍼의 직접접합 (Direct Bonding of GOI Wafers with High Annealing Temperatures)

  • 변영태;김선호
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.652-655
    • /
    • 2006
  • A direct wafer bonding process necessary for GaAs-on-insulator (GOI) fabrication with high thermal annealing temperatures was studied by using PECVD oxides between gallium arsenide and silicon wafers. In order to apply some uniform pressure on initially-bonded wafer pairs, a graphite sample holder was used for wafer bonding. Also, a tool for measuring the tensile forces was fabricated to measure the wafer bonding strengths of both initially-bonded and thermally-annealed samples. GaAs/$SiO_2$/Si wafers with 0.5-$\mu$m-thick PECVD oxides were annealed from $100^{\circ}C\;to\;600^{\circ}C$. Maximum bonding strengths of about 84 N were obtained in the annealing temperature range of $400{\sim}500^{\circ}C$. The bonded wafers were not separated up to $600^{\circ}C$. As a result, the GOI wafers with high annealing temperatures were demonstrated for the first time.

실리콘기판 직접접합에 있어서 HF 전처리 조건에 따른 초기접합에 관한 연구 (Study on pre-bonding according with HF pre-treatment conditions in Si wafer direct bonding)

  • 강경두;박진성;정수태;주병권;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 1999
  • Si direct bonding (SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on- pre treatment conditions in Si wafer direct bonding, The paper resents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, applied pressure and annealing temperature(200~ 100$0^{\circ}C$) after pre-bonding. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively, Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding(Min 2.4kgf/$\textrm{cm}^2$~ Max : 14.kgf/$\textrm{cm}^2$)

  • PDF

3D 적층 IC를 위한 웨이퍼 레벨 본딩 기술 (Wafer Level Bonding Technology for 3D Stacked IC)

  • 조영학;김사라은경;김성동
    • 마이크로전자및패키징학회지
    • /
    • 제20권1호
    • /
    • pp.7-13
    • /
    • 2013
  • 3D 적층 IC 개발을 위한 본딩 기술의 현황에 대해 알아보았다. 실리콘 웨이퍼를 본딩하여 적층한 후 배선 공정을 진행하는 wafer direct bonding 기술보다는 배선 및 금속 범프를 먼저 형성한 후 금속 본딩을 통해 웨이퍼를 적층하는 공정이 주로 연구되고 있다. 일반적인 Cu 열압착 본딩 방식은 높은 온도와 압력을 필요로 하기 때문에 공정온도와 압력을 낮추기 위한 연구가 많이 진행되고 있으며, 그 가운데서 Ar 빔을 조사하여 표면을 활성화 시키는 SAB 방식과 실리콘 산화층과 Cu를 동시에 본딩하는 DBI 방식이 큰 주목을 받고 있다. 국내에서는 Cu 열압착 방식을 이용한 웨이퍼 레벨 적층 기술이 현재 개발 중에 있다.

유리/실리콘 기판 직접 접합에서의 세정과 열처리 효과 (Effects of Wafer Cleaning and Heat Treatment in Glass/Silicon Wafer Direct Bonding)

  • 민홍석;주영창;송오성
    • 한국전기전자재료학회논문지
    • /
    • 제15권6호
    • /
    • pp.479-485
    • /
    • 2002
  • We have investigated the effects of various wafers cleaning on glass/Si bonding using 4 inch Pyrex glass wafers and 4 inch silicon wafers. The various wafer cleaning methods were examined; SPM(sulfuric-peroxide mixture, $H_2SO_4:H_2O_2$ = 4 : 1, $120^{\circ}C$), RCA(company name, $NH_4OH:H_2O_2:H_2O$ = 1 : 1 : 5, $80^{\circ}C$), and combinations of those. The best room temperature bonding result was achieved when wafers were cleaned by SPM followed by RCA cleaning. The minimum increase in surface roughness measured by AFM(atomic force microscope) confirmed such results. During successive heat treatments, the bonding strength was improved with increased annealing temperatures up to $400^{\circ}C$, but debonding was observed at $450^{\circ}C$. The difference in thermal expansion coefficients between glass and Si wafer led debonding. When annealed at fixed temperatures(300 and $400^{\circ}C$), bonding strength was enhanced until 28 hours, but then decreased for further anneal. To find the cause of decrease in bonding strength in excessively long annealing time, the ion distribution at Si surface was investigated using SIMS(secondary ion mass spectrometry). tons such as sodium, which had been existed only in glass before annealing, were found at Si surface for long annealed samples. Decrease in bonding strength can be caused by the diffused sodium ions to pass the glass/si interface. Therefore, maximum bonding strength can be achieved when the cleaning procedure and the ion concentrations at interface are optimized in glass/Si wafer direct bonding.

Deep cavity를 가진 Cap Wafer와 MEMS 소자의 Polymer Wafer bonding (Polymer Wafer bonding of MEMS device and Cap Wafer with deep cavity)

  • 이현기;박태준;윤상기;박남수;박형재;민종환;이영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1702-1703
    • /
    • 2011
  • MEMS 소자의 Wafer level Package 관련하여 Deep cavity를 가진 Cap Wafer와 Polymer bonding 중 cavity 단차로 인한 Polymer Patterning 및 접합 불량의 어려움을 극복할 수 있는 새로운 공정 flow를 제안하였다. Cavity를 형성할 때 사용하는 Si deep etching Mask인 기존의 Photoresist를 접합용 감광성 Polymer로 대체하고, cavity 형성 후, 별도의 추가 공정 없이 이 Polymer를 이용해 Wafer bonding을 진행하였다. 이를 통해 cavity 단차에 따른 문제를 해결함과 동시에 공정이 단순하고 제작 비용이 저렴하며, 신뢰성 있는 Wafer level Package를 구현하였다.

  • PDF

SOI(Silicon-On-Insulator)- Micromachining 기술을 이용한 MEMS 소자의 제작 (Fabrication of MEMS Devices Using SOI(Silicon-On-Insulator)-Micromachining Technology)

  • 주병권;하주환;서상원;최승우;최우범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.874-877
    • /
    • 2001
  • SOI(Silicon-On-Insulator) technology is proposed as an alternative to bulk silicon for MEMS(Micro Electro Mechanical System) manufacturing. In this paper, we fabricated the SOI wafer with uniform active layer thickness by silicon direct bonding and mechanical polishing processes. Specially-designed electrostatic bonding system is introduced which is available for vacuum packaging and silicon-glass wafer bonding for SOG(Silicon On Glass) wafer. We demonstrated thermopile sensor and RF resonator using the SOI wafer, which has the merits of simple process and uniform membrane fabrication.

  • PDF

GaAs 웨이퍼 본딩모듈의 최적화 설계 (Design Optimization of GaAs Wafer Bonding Module)

  • 지원호;송준엽;강재훈;한승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.860-864
    • /
    • 2003
  • Recently. use of compound semiconductor is widely increasing in the area of LED and RF device. In this study, wafer bonding module is designed and optimized to bond 6 inches device wafer and carrier wafer. Bonding process is performed in vacuum environment and resin is used to bond two wafers. Load spreader and double heating mechanisms are adopted to minimize wafer warpage and void. Structure and heat transfer analyses show the designed mechanisms are very effective in performance improvement.

  • PDF

SiO$_2$ 박막을 이용한 SOI 직접접합공정 및 특성 (Processing and Characterization of a Direct Bonded SOI using SiO$_2$ Thin Film)

  • 유연혁;최두진
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.863-870
    • /
    • 1999
  • SOI(silicon on insulafor) was fabricated through the direct bonding using (100) Si wafer and 4$^{\circ}$off (100) Si wafer to investigate the stacking faults in silicon at the Si/SiO2 oxidized and bonded interface. The treatment time of wafer surface using MSC-1 solution was varied in order to observe the effect of cleaning on bonding characteristics. As the MSC-1 treating time increased surface hydrophilicity was saturated and surface microroughness increased. A comparison of surface hydrophilicity and microroughness with MSC-1 treating time indicates that optimum surface modified condition for time was immersed in MSC-1 for 2 min. The SOI structure directly bonded using (100) Si wafer and 4$^{\circ}$off (100) Si wafer at the room temperature were annealed at 110$0^{\circ}C$ for 30 min. Then the stacking faults at the bonding and oxidation interface were examined after the debonding. The results show that there were anomalies in the gettering of the stacking faults at the bonded region.

  • PDF