• Title/Summary/Keyword: WIP(Work-In-Process)

Search Result 44, Processing Time 0.027 seconds

Special Cases on Two Machine Flow Shop Scheduling with Weighted WIP Costs

  • Yang, Jae-Hwan
    • Management Science and Financial Engineering
    • /
    • v.15 no.2
    • /
    • pp.69-100
    • /
    • 2009
  • In this paper, we consider a relatively new two-machine flow shop scheduling problem where the unit time WIP cost increases as a job passes through various stages in the production process, and the objective is to minimize the total WIP (work-in-process) cost. Specifically, we study three special cases of the problem. First, we consider the problem where processing times on machine 1 are identical. Second, the problem with identical processing times on machine 2 is examined. The recognition version of the both problems is unary NP-complete (or NP-complete in strong sense). For each problem, we suggest two simple and intuitive heuristics and find the worst case bound on relative error. Third, we consider the problem where the processing time of a job on each machine is proportional to a base processing time. For this problem, we show that a known heuristic finds an optimal schedule.

A Daily Production Planning Method for Improving the Production Linearity of Semiconductor Fabs (반도체 Fab의 생산선형성 향상을 위한 일간생산계획 방법론)

  • Jeong, Keun-Chae;Park, Moon-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.275-286
    • /
    • 2015
  • In this paper, we propose a practical method for setting up a daily production plan which can operate semiconductor fabrication factories more stably and linearly by determining work in process (WIP) targets and movement targets. We first adjust cycle times of the operations to satisfy the monthly production plan. Second, work in process (WIP) targets are determined to control the production progress of operations: earliness and tardiness. Third, movement targets are determined to reduce cumulated differences between WIP targets and actual WIPs. Finally, the determined movement targets are modified through a simulation model which considers capacities of the equipments and allocations of the WIPs in the fab. The proposed daily production planning method can be easily adapted to the memory semiconductor fabs because the method is very simple and has straightforward logics. Although the proposed method is simple and straightforward, the power of the method is very strong. Results from the shop floor in past few periods showed that the proposed methodology gives a good performance with respect to the productivity, workload balance, and machine utilization. We can expect that the proposed daily production planning method will be used as a useful tool for operating semiconductor fabrication factories more efficiently and effectively.

Development of CPAM(Construction Process Analysis Model) based on Lean Construction Principles (린 건설 원리에 기초한 건설 생산 공정 분석 모델에 관한 연구)

  • Kim Chan Hun;Kim Chang Duk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.4 s.8
    • /
    • pp.48-61
    • /
    • 2001
  • This study aims at improving work reliability. It proposes a way to overcome the limitations of current scheduling methods by providing a new framework, CPAM(Construction Process Analysis Model) based on the lean principles. It suggests methods which improve work reliability and production effectiveness with variability control methods. Also it suggests methods which reduce inventories of materials and equipment and WIP(Work In Process) using two techniques; Lookahead Schedule and Weekly Work Plan. The contribution of this research also includes that it assumes planning as a process of reducing uncertainty and maximizing throughput, counter-posing plan reliability to resource redundancy as alternative strategies for managing in conditions of uncertain work flow.

  • PDF

Real-Time Batch Size Determination in The Production Line (생산 라인에서의 실시간 배치 크기 결정)

  • Na, Kihyun;Kim, Minje;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.55-63
    • /
    • 2019
  • This paper develops an algorithm to determine the batch size of the batch process in real time for improving production and efficient control of production system with multiple processes and batch processes. It is so important to find the batch size of the batch process, because the variability arising from the batch process in the production system affects the capacity of the production. Specifically, batch size could change system efficiency such as throughput, WIP (Work In Process) in production system, batch formation time and so on. In order to improve the system variability and productivity, real time batch size determined by considering the preparation time and batch formation time according to the number of operation of the batch process. The purpose of the study is to control the WIP by applying CONWIP production system method in the production line and implements an algorithm for a real time batch size decision in a batch process that requires long work preparation time and affects system efficiency. In order to verify the efficiency of the developed algorithm that determine the batch size in a real time, an existed production system with fixed the batch size will be implemented first and determines that batch size in real time considering WIP in queue and average lead time in the current system. To comparing the efficiency of a system with a fixed batch size and a system that determines a batch size in real time, the results are analyzed using three evaluation indexes of lead time, throughput, and average WIP of the queue.

A Case Study on Lead Time Improvement Using a Simulation Approach (시뮬레이션 방식을 이용한 리드 타임 개선 사례 연구)

  • Ro, Wonju;Sim, Jaehun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.140-152
    • /
    • 2021
  • During the shift from gasoline vehicles to electric ones, auto parts manufacturing companies have realized the importance of improvement in the manufacturing process that does not require any layout changes nor extra investments, while maintaining their current production rate. Due to these reasons, for the auto part manufacturing company, I-company, this study has developed the simulation model of the PUSH system to conduct a process analysis in terms of production rate, WIP level, and logistics work's utilization rate. In addition, this study compares the PUSH system with other three manufacturing systems -KANBAN, DBR, and CONWIP- to compare the performance of these production systems, while satisfying the company's target production rate. With respect to lead-time, the simulation results show that the improvement of 77.90% for the KANBAN system, 40.39% for the CONWIP system, and 69.81% for the DBR system compared to the PUSH system. In addition, with respect to WIP level, the experimental results demonstrate that the improvement of 77.91% for the KANBAN system, 40.41% for the CONWIP system, and 69.82% for the DBR system compared to the PUSH system. Since the KANBAN system has the largest impacts on the reduction of the lead-time and WIP level compared to other production systems, this study recommends the KANBAN system as the proper manufacturing system of the target company. This study also shows that the proper size of moving units is four and the priority allocation of bottleneck process methods improves the target company's WIP and lead-time. Based on the results of this study, the adoption of the KANBAN system will significantly improve the production process of the target company in terms of lead-time and WIP level.

Selection Method for Optimal Shop Floor Control According to Manufacturing Environment (생산환경 변화에 따른 최적 Material Flow Control 선택방법)

  • Park, Sang Geun;Park, Sung Ho;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • Material flow control (MFC) is a kind of operational policy to control of the movement of raw materials, components, and products through the manufacturing lines. It is very important because it varies throughput, line cycle time, and work-in-process (WIP) under the same manufacturing environments. MFC can be largely categorized into three types such as Push, Pull, and Hybrid. In this paper, we set various manufacturing environments to compare five existing MFC mechanisms: Push, Pull, and Hybrid (CONWIP, Gated MaxWIP, Critical WIP Loops, etc). Three manufacturing environments, manufacturing policies (make to stock and make to order), demand (low, medium, high), and line balancing (balanced, unbalanced, and highly unbalanced) are considered. The MFCs are compared in the point of the five functional efficiencies and the proposed compounded efficiency. The simulation results shows that the Push is superior in the functional efficiency and GMWIP is superior in the compounded efficiency.

Heuristics for Flow Shop Scheduling with Weighted WIP Costs

  • Yang Jae-Hwan;Kim Hyun-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1124-1132
    • /
    • 2006
  • This paper considers a flow shop scheduling problem where a different WIP (work-in-process) state has different weight on the duration time. The objective is to minimize the sum of the weighted WIP. For the two machine flow shop case, the recognition version is unary NP-Complete. The three simple and intuitive heuristics H0, H1, and H2 are presented for the problem. For each heuristic, we find an upper bound on relative error which is tight in limit. For heuristic H2, we show that H2 dominates the other two heuristics.

  • PDF

Flow-shop Scheduling Problem with Weighted Work-In-Process

  • Yang, Jae-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.193-206
    • /
    • 2005
  • This paper considers a new flow-shop scheduling problem where a different WIP (work-in-process) state has different weight on the duration time. For the two machine case, the recognition version is NP-Complete in the strong sense. Several special cases are solved by different polynomial time algorithms. Finally, we develop a heuristic and provide an upper-bound on relative error which is tight in limit.

  • PDF

Travel Time Modeling and Analysis for an Automated Work-in-process Carousel

  • Lee, Moon-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.77-87
    • /
    • 1989
  • This paper deals with an automated storage carrousel which handles work-in-process(WIP) such as small parts for kitting. The system has been used predominately for order picking applications. Throughput performance of the system can be measured by the inverse of the expected order picking time. Analytic models are developed for approximating the expected times under the "nearest-item" sequencing rule. The performance of the models are tested through computer simulation. The gap between the two is shown to be reasonably small.

  • PDF

A Study on the Order Release Method in Job Shop (Job Shop에서의 주문 투입 통제 방안 연구)

  • Choi, Ki-Beom;Kim, Sung-Shick;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.192-203
    • /
    • 1999
  • This paper deals with the order release problem for minimizing weighted earliness and tardiness as well as Work In Process (WIP) in dynamic job shop environments. A newly designed hierarchical order release mechanism is developed for efficient real-time control of the earliness/tardiness and WIP. The hierarchical order release mechanism consists of the order release plan and the order release control which is composed of two procedures. The experimental results show that the proposed order release mechanism is superior to other four order release mechanisms under overall simulation conditions of utilization rate, due-date allowances, and earliness/tardiness cost structures. In addition, the difference of total cost among the four dispatching rules is much more reduced in the proposed order release mechanism than in other release mechanisms.

  • PDF