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AbstractAbstractAbstractAbstract    

This paper considers a new flow-shop 

scheduling problem where a different WIP (work-

in-process) state has different weight on the 

duration time. 

For the two machine case, the recognition 

version is NP-Complete in the strong sense. 

Several special cases are solved by different 

polynomial time algorithms. Finally, we develop a 

heuristic and provide an upper-bound on relative 

error which is tight in limit. 

 

1. Introduction.1. Introduction.1. Introduction.1. Introduction.    

 

The scheduling literature considers a wide 

variety of problems and objectives. One 

important objective that has not received much 

attention is the work-in-process cost (WIP) 

associated with value that is added during the 

production process. In the production process, as 

labor and material are added to the product, the 

value of the product and hence the WIP costs 

increase. Hence, a factory may be able to reduce 

the total WIP costs by keeping WIP inventory at 

the earlier stage of manufacturing process 

instead of keeping inventory at the later stage. 

Minimizing WIP costs is an important 

criterion for many manufacturing facilities. 

Conway et al. (1988) describes the role of WIP in 

serial production lines and investigates the 

behavior of lines buffered with storage and 

explores the distribution and quantity of WIP 

inventory that accumulates.  

Any scheduling problem with the objective of 

minimizing total completion time minimizes the 

average WIP inventory during the entire 

manufacturing process of jobs. In this case, the 

WIP cost remains the same throughout the 

manufacturing process. 

With the minimum-wait objectives, the cyclic 

sequencing problem minimizes the average WIP 

inventory of partially finished jobs subject to the 

constraint that the jobs have to be produced at 

the maximum throughput rate.  A difference from 

the regular scheduling problem with the objective 

of minimizing total completion time is that the 

problem recognizes the WIP cost only when jobs 

are not processed by a machine. However, the 

WIP cost remains the same for the entire 

manufacturing process. For surveys on the 

problem, see Kamoun and Srikandarajah (1993) 

and Matsuo (1990). 

In this paper, we consider a new flow-shop 

scheduling problem where a different WIP state 

has different weight on the duration time. The 

value is added while a raw material is processed 

through the flow-shop. We consider the two 

machine flow-shop case for this paper.  

The two machine flow-shop problem with the 

objective of minimizing total completion time is a 

well known problem. The recognition version of 

this problem is known to be NP-Complete in the 

strong sense (Garey et al. ,1979). Several studies 

are done and most of them are focused on 

developing efficient algorithms (Wang et al., 

1996;Hoogeveen and Kawaguchi, 1999;Croce et 

al., 1996, 2002). 

In the next section, we describe the problem 
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and introduce some notation. Then, we establish 

complexity of the problem. Also, some 

preliminary results and solutions for special 

cases are presented. Finally, we develop a 

heuristic and provide an upper-bound on relative 

error which is tight in limit. 

 

2. Description of Problem2. Description of Problem2. Description of Problem2. Description of Problem    

    

We assume that all jobs are available at time 

zero. Let N  be a set of jobs },,2,1{ nN Κ=  where 

n  is the number of jobs. Following the standard 

scheduling classification schedule of Graham et al. 

(1979), we refer to the problem of minimizing the 

WIP cost in a flow shop as ∑ jWIPF ||2  where 

jWIP  is work in process cost for job j . In a two 

machine system, there are four different types of 

WIP costs: 

� Type 1: before a job is put into the first 

machine (value of raw material) 

� Type 2: a job is being processed by machine 1 

(value of raw material + added components at 

machine 1) 

� Type 3: after a job is processed by machine 1 

but before the job is put into machine 2 (value 

of raw material + added components at 

machine 1 + labor and depreciation of machine 

1) 

� Type 4: a job is being processed by machine 2 

(value of raw material + added components at 

machine 1 +labor and depreciation of machine 

1 + added components at machine 2) 

Now, we assign different weight (value) to 

each WIP inventory. Let iw  be weight for Type i  

inventory for 4,3,2,1=i . Then, we have Remark 1. 

Remark 1 Remark 1 Remark 1 Remark 1 For problem ∑ jWIPF ||2 ,  

4321 wwww ≤≤≤ . 

A schedule defines a job order for each machine 

and a permutation schedule is a schedule in which 

every machine has the same job order and no 

preemption is allowed. Let jT1  be waiting time of 

job j  before it starts processing on machine 1 

and jT2  be waiting time before job j  starts 

processing on machine 2 for nj ,,2,1 Κ= , 

respectively. The completion time of job j  is 

jjjjj pTpTC 2211 +++=  where ijp  is processing 

time of job j  on machine i  for 2,1=i . While the 

actual weight might vary based on the job, most of 

the jobs on a flow line are similar. Consequently, 

one reasonable model is that the value added from 

a given operation is proportional to the time spent 

on the machine. Thus, the WIP cost for job j  is 

.24231211 jjjjj pwTwpwTwWIP +++=    (1) 

Note that jpw 12  and jpw 24  are fixed regardless 

of job sequence. 

 

3. Complexity of Problem 3. Complexity of Problem 3. Complexity of Problem 3. Complexity of Problem ∑ jWIPF ||2     

 

The following remark establishes that problem 

∑ jCF ||2  is a special case of problem 

∑ jWIPF ||2 . 

Remark 2 Remark 2 Remark 2 Remark 2 If 31 ww = , then problem ∑ jWIPF ||2  is 

identical to problem ∑ jCF ||2 .  

Proof.Proof.Proof.Proof. Note that jjjjj pTpTC 2211 +++=  where 

jp1  and jp2  are fixed for any job sequence. Let 

31 www == . If we divide jWIP  by w , then  

.
24

2

12

1
w

pw
T

w

pw
T

w

WIP j

j

j

j

j +++=  

Since wpw j /12  and wpw j /14  remain the 

same for any schedule, the objective of problem 

∑ jWIPF ||2  is now to minimize ∑ = +n

j jj TT
1 21 )( .  

This is the same as minimizing ∑ jC . Hence, we 

have the result.   

The following theorem establishes the 

complexity of problem ∑ jWIPF ||2 .    

Theorem 1Theorem 1Theorem 1Theorem 1 The recognition version of problem 

∑ jWIPF ||2  is NP-Complete in the strong sense. 
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Proof.Proof.Proof.Proof. Note that the recognition version of 

problem ∑ jCF ||2  is NP-Complete in the strong 

sense (Garey et al., 1979). From Remark 2, 

∑ jCF ||2  is a special case of ∑ jWIPF ||2 .  

The following theorem establishes the 

complexity of problem ∑ jWIPF ||2  when 

nppp 11211 === Λ . 

Theorem 2Theorem 2Theorem 2Theorem 2 The recognition version of problem 

∑ jWIPF ||2  with nppp 11211 === Λ  is NP-

Complete in the strong sense. 

Proof.Proof.Proof.Proof. Note that the recognition version of 

problem ∑ jCF ||2  with  nppp 11211 === Λ  is 

NP-Complete in the strong sense (Hoogeveen and 

Kawaguchi, 1999). From Remark 2, ∑ jCF ||2  is a 

special case of ∑ jWIPF ||2 .  

The following lemma establishes the 

relationship between problem ∑ jWIPF ||2  and 

problem ∑− jCwaitnoF ||2 .  

Lemma 1Lemma 1Lemma 1Lemma 1 If 31)1( wwn ≤− , then problem 

∑ jWIPF ||2  is identical to problem 

∑− jCwaitnoF ||2 .  

Proof.Proof.Proof.Proof. Let *σ  be an optimal schedule for 

problem ∑ jWIPF ||2 . Note that in *σ , the first job 

requires no inserted idle time on machine 1 since 

no job is scheduled ahead on machine 2. 

We assume that in *σ , jobs are scheduled in 

their index order. Suppose that job 2 has wait time 

before machine 2, say 0>∆t . Inserting idle time 

0>∆t  on machine 1 for job 2 leads to at most t∆  

additional wait time for job 2 and each subsequent 

job before machine 1 compared to a schedule 

without an inserted idle time. Without inserted idle 

time, the schedule must have at least t∆  idle time 

on machine 2. 

Hence, delaying job 2 by t∆  on machine 1 

can create additional wait time of at most tn ∆− )1(  

before machine 1 in total instead of t∆  wait time 

before machine 2 for job 2. Similarly, delaying job 

3 by t∆  on machine 1 can create additional wait 

time of at most tn ∆− )2(  before machine 1 instead 

of t∆  wait time on machine 2 and so on. 

Therefore, it is sufficient to have 

twtwn ∆≤∆− 31)1(  for an optimal schedule to have 

no idle time on machine 2.  

The following corollary establishes 

complexity of problem ∑ jWIPF ||2  with 

31)1( wwn ≤− .  

Corollary 1Corollary 1Corollary 1Corollary 1    The recognition version of problem 

∑ jWIPF ||2  with 31)1( wwn ≤−  is NP-Complete in 

the strong sense. 

Proof.Proof.Proof.Proof. Note that the recognition version of 

problem ∑− jCwaitnoF ||2  is NP-Complete in 

the strong sense (Röck, 1984). From Lemma 2, 

problem ∑− jCwaitnoF ||2  is identical to 

problem ∑ jWIPF ||2  with 31)1( wwn ≤− .  

 

4. Preliminary Results4. Preliminary Results4. Preliminary Results4. Preliminary Results    

 

In this section, we establish that two 

important characteristics of the problem. We begin 

with the following lemma. 

Lemma 2Lemma 2Lemma 2Lemma 2 For problem ∑ jWIPF ||2 , there exists 

an optimal permutation schedule. 

Proof.Proof.Proof.Proof. We use pair wise interchange argument. 

Suppose that in a unique optimal schedule, jobs 

are processed in their index order. For Nkj ∈, , 

suppose that jobs j  and k  for kj <  are 

processed consecutively on machine 1 and job k  

precedes job j  on machine 2. 

If jk pp 22 > , then switching processing order 

on machine 2 decreases solution value, a 

contradiction. If jk pp 22 ≤ , then we need to 

consider two cases. Suppose jk pp 11 > . Then, 

switching processing order on machine 1 does not 

increase solution value, a contradiction. 

Alternatively, suppose that jk pp 11 ≤ . By switching 

processing order on machine 1, jC1  is decreased 

by kp1  and kC1  is increased by jp1 , a 
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contradiction.  

As a result of Lemma 2, we only consider a 

permutation schedule. 

Lemma 3Lemma 3Lemma 3Lemma 3    For problem ∑ jWIPF ||2 , some optimal 

schedule requires inserted idle time on machine 1. 

Proof.Proof.Proof.Proof. Consider the instance where 2=n , 

11211 == pp , and 22221 == pp . Note that any job 

sequence is optimal because the two jobs are 

identical. Without loss of generality, we assume 

that (1,2) is an optimal schedule. Note that job 1 

can start as early as at time 0 and completes at 

time 3. Hence, 3211 =+=C . Job 2 can start at 

time 1 on machine 1 but then, job 2 must wait until 

job 1 completes on machine 2 at time 3. However, 

since 13 ww ≥ , it is optimal to start job 2 on 

machine 2 at time 2. Hence, for job 2, one unit of 

inserted idle time is required on machine 1.  

As a result of Lemma 3, when we describe an 

optimal schedule, we may need to specify a job 

order and start time (or completion time) of each 

job. Having inserted idle time is a crucial 

difference between problems ∑ jCF ||2  and 

∑ jWIPF ||2 . As a remark, for problem ∑ jCF ||2 , 

there exists at least one optimal permutation 

schedule without any idle time on machine 1 

(Conway et al., 1967).  

 

5. Solutions for Special Cases5. Solutions for Special Cases5. Solutions for Special Cases5. Solutions for Special Cases    

 

In this section, we establish several special 

cases for problem ∑ jWIPF ||2 . . . . The following 

remark establishes a special case for the problem. 

Remark 3Remark 3Remark 3Remark 3 For problem ∑ jWIPF ||2 , suppose that 

we schedule jobs in SPT order of processing time 

on machine 1 without inserted idle time on 

machine 1. If 02 =jT  for all Nj∈ , then this 

schedule is optimal.  

Proof.Proof.Proof.Proof. Since we schedule jobs in SPT order of 

processing time on machine 1, ∑ =

n

j jT1 1  is 

minimized. Since 02 =jT  for all Nj∈ , from (1), 

we have the result.  

Corollary 2Corollary 2Corollary 2Corollary 2 The SPT rule without inserted idle 

time on machine 1 is optimal for 

∑= jjij WIPppF ||2 . 

Proof.Proof.Proof.Proof. Since jij pp = , SPT rule without inserted idle 

time on machine 1 guarantees that there exists no 

idle time before a job is put into machine 2. From 

Remark 3, SPT rule is optimal for 

∑= jjij WIPppF ||2 .  

The following remark establishes the third 

special case for the problem.  

Remark 4Remark 4Remark 4Remark 4    For problem ∑ jWIPF ||2 , suppose that 

jj pp 21 ≥  for all Nj∈ . Then, SPT order of 

processing time on machine 1 without inserted 

idle time on machine 1 is optimal. 

Proof.Proof.Proof.Proof. Since we schedule jobs in SPT order of 

processing time on machine 1 without inserted 

idle time on machine 1, ∑ =

n

j jT1 1  is minimized. Also, 

02 =jT  for all Nj∈  because  jj pp 21 ≥  for all 

Nj∈ .  

Note that the condition in Remark 4 is usually 

true in real world since final assembly generally 

takes shorter time than fabrication process. 

Remark 5Remark 5Remark 5Remark 5    If 01 =w , then any job sequence is 

optimal for problem ∑ jWIPF ||2 .    

Proof.Proof.Proof.Proof. Since 01 =w , for any Nj∈ ,  job j  can 

be delayed on machine 1 so that 02 =jT . Hence, 

any job sequence is optimal for problem 

∑ jWIPF ||2 .  

The next theorem establishes that if 

processing times on machine 2 are the same for 

all jobs, then SPT order of processing time on 

machine 1 without any wait time before machine 2 

is optimal. 

Theorem 3Theorem 3Theorem 3Theorem 3    For problem ∑ jWIPF ||2 , suppose that 

nppp 22221 === Λ . Then, SPT order of processing 

time on machine 1 without any wait time before 
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machine 2 is optimal. 

Proof.Proof.Proof.Proof. Let jpp 22 =  for nj ,,2,1 Κ= . We need to 

consider the following three cases. We assume 

that jobs are indexed in nondecreasing order of 

jp1  for nj ,,2,1 Κ= . 

Case 1. 122 pp ≤ . 

Note that 2141121 pwpwWIP += . Since 122 pp ≤ , 

SPT order of processing time on machine 1 does 

not generate any wait time before machine 2. 

From Remark3, the result holds. 

Case 2. npp 12 > . 

Note that 2141121 pwpwWIP += . Since 13 ww ≥ , 

it is optimal that we schedule jobs n,,3,2 Κ  such 

that the jobs do not wait before machine 2. So, we 

delay each job by jpp 12 −  for nj ,,3,2 Κ=  on 

machine 1. Note that this does not create any 

additional wait time compared to a schedule with 

no inserted idle time on machine 1. Then, for 

nj ,,3,2 Κ= , 

)2(.

})2({

2412

122111

jj

jj

pwpw

pppjpwWIP

+

+−+−+=
    

If we add up for nj ,,2,1 Κ= , then 

.)(

2

)1(

)(

)1()1(

1
2412

1
1

2
111

1
2412

2
11

2
21111

1

∑

∑

∑

∑∑

∑

=

=

=

==

=

+

+

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





−
−

+=

+

+−−+−=

n

j
jj

n

j
j

n

j
jj

n

j
j

n

j

n

j
j

pwpw

p
pnn

npw

pwpw

pwpjwpnw

WIP

 

Notice that ∑ =

n

j jWIP
1

 is minimized as long as 

job 1 is scheduled first where 1minarg 11 =≤≤ jnj p . 

Hence, we have the result. 

Case 3. nppp 1212 ≤< . 

Let σ  be a schedule generated by SPT order 

of processing time on machine 1 without any wait 

time before machine 2. Since nppp 1212 ≤< , there 

exists Nk ∈  such that 1,121 +≤≤ kk ppp  for 

}1,,4,3{ −∈ nk Κ . Note that 2141121 )( pwpwWIP +=σ . 

For kj ≤≤2 , we use the result from Case 2. 

From (2), 

)3(

})2({)(

2412

122111

jj

jj

pwpw

pppjpwWIP

+

+−+−+=σ
 

for kj ,,3,2 Κ= . For ,1+= kj  we have 

.})1({)( 24122111 jjj pwpwpkpwWIP ++−+=σ  (4) 

Similarly, for ,2+≥ kj  we have 

.

})1({)(

24

12

1

1
112111

j

j

j

ku
uj

pw

pwpwpkpwWIP

+

+−+= ∑
−

+=

σ
 

We use job pair wise interchange argument. 

Suppose there exists a unique optimal schedule 

where for some Nkj ∈, , job j  precedes job k  

and kj pp 11 > . Let jobs q  and r  be the first pair 

of such jobs where q  and r  are processed 

consecutively and rq pp 11 > . 

If kq ≤  and 1+≥ kr , then the proofs are 

similar to those in Cases 1 and 2, respectively. 

Suppose that kr =  and 1+= kq . Let 'σ  be the 

new schedule. Then, 

qqq pwpwpkpwWIP 24122111 })2({)'( ++−+=σ  and  

rrrq

rr

rq

r

pwpwpppkpw

pwpw

pppppkpw

WIP

2412112111

2412

12212111

})1({

)}()()1({

)'(

++−+−+=

++

−+−+−+=

σ

 

Note that 

)()(

)()(

112111

1,112121

rqrq

kkk

ppwppw

ppwppw

++−≤

++− +
 

since 21 pp q ≥ . Hence, from (3) and (4),  

).'()'(

)(

)(})32(2{

)(

)(})32(2{

)'()'(

1,224

1,112122111

224

112112111

σσ

σσ

rq

kk

kkk

rq

rqrq

rq

WIPWIP

ppw

ppwpppkpw

ppw

ppwpppkpw

WIPWIP

+=

++

++−+−+≥

++

++−+−+=

+

+

+

For 

completion time, qr ppkpC 12111 )1()'( +−+=σ  and 

1,12112 )1()'( ++−+= kr ppkpC σ . Also, 
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1,121111 )1()( ++ +−+= kk ppkpC σ  and 

1,21,121121 )1()( +++ ++−+= kkk pppkpC σ . Hence, 

)()'( 111 σσ += kr CC  and )()'( 212 σσ += kr CC . 

Therefore, we have the result.  

 

6. 6. 6. 6. A A A A HeuristicHeuristicHeuristicHeuristic    

 

In this section, we introduce a heuristic and 

analyze the worst case behavior of the heuristic. 

The heuristic is based on the approximation 

algorithm for problem ∑ jCF ||2 presented by 

Gonzalez and Sahni (1978). 

The approximation algorithm by Gonzalez and 

Sahni (1978) proceeds by reindexing the jobs in 

order of nondecreasing jj pp 21 +  for nj ,,2,1 Κ= , 

settling ties arbitrarily, and by subsequently 

scheduling jobs in that order in 1M  and 2M  such 

that unnecessary idle time is avoided. This leads 

to the set of completion times:  

.,,3,2

,},max{,

,,

211,2212,11

2111211111

njfor

pCCCpCC

andppCpC

jjjjjjj

Κ=

+=+=

+==

−−  

Note that this approximation algorithm runs in 

)log( nnO  time and the resulting schedule is a 

permutation schedule with no idle time on 1M  

between the execution of the jobs. 

6.1 6.1 6.1 6.1 DescriptionDescriptionDescriptionDescription    

In order to apply the heuristic to problem 

∑ jWIPF ||2 , we modify the algorithm as follows. 

Since 31 ww ≤ , for each job, we eliminate wait time 

before machine 2 as much as possible. A new 

heuristic proceeds by reindexing the jobs in order 

of nondecreasing jj pp 21 +  for nj ,,2,1 Κ= , 

settling ties arbitrarily, and sequentially schedules 

jobs in that order in 1M  and 2M  as the heuristic 

by Gonzalez and Sahni (1978). However, while 

minimizing completion time, jobs are delayed on 

machine 1 so that it does not create any wait time 

before machine 2. This leads to the set of 

completion times: 

.,,3,2

,},,max{

,,

2121,211,11

2111211111

njfor

pCCCpCC

andppCpC

jjjjjjj

Κ=

+=+=

+==

−−  

The new heuristic is different from the heuristic 

by Gonzalez and Sahni (1978) because it inserts 

idle time on machine 1 to eliminate wait time 

before machine 2. With this assumption, our 

problem becomes similar to flow-shop problem 

with no-wait time before machine 2. As a remark, 

the recognition version of 

problem ∑− jCwaitnoF ||2 is NP-Complete in the 

strong sense (Röck, 1984). For a survey on this 

problem, see Hall and Sriskandarahjah (1996) and 

Kanet and Sridahran (2000). We now formally 

describe the heuristic. 

Heuristic H1Heuristic H1Heuristic H1Heuristic H1    

0. Reindex jobs so that 1,21,121 ++ +≤+ jjjj pppp  for 

nj ,,2,1 Κ= . 

1. Schedule job 1 first so that 1111 pC =  and 

211121 ppC += .  

Schedule jobs n,,3,2 Κ  in their index order 

on 1M  and 2M  such that },max{ 1,211,1 −− + jjj CpC  

and jjj pCC 212 +=  for .,,3,2 nj Κ=   

When there exist ties, break them arbitrarily. 

2. From a completed schedule, calculate jWIP  for 

nj ,,2,1 Κ= . 

Output ∑ =

n

j jWIP
1

 and stop. 

In Step 0, reindexing the jobs requires 

)log( nnO  time. Since all the other operations 

require )(nO  time, the time requirement of H1 is 

)log( nnO  time. 

6.6.6.6.2222 An Upper Bound on the Relative Error An Upper Bound on the Relative Error An Upper Bound on the Relative Error An Upper Bound on the Relative Error    

In this section, we analyze heuristic H1 and 

show that the worst case bound on relative error 

is )/(2 βαβ +  where α  and β  denote the 

minimum and maximum processing time of all 

operations, and the bound is tight in limit. 
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In order to analyze the worst case behavior of 

the heuristic, we follow the approach by 

Hoogeveen and Kawaguch (1999). They analyze 

the heuristic by Gonzalez and Sahni (1978) and 

establish the same bound for problem ∑ jCF ||2 . 

Our analysis is more complicated than theirs due 

to a different weight on each type of WIP 

inventory.  

We begin by establishing a lower bound for an 

optimal schedule. Throughout this section, let *σ  

be an optimal schedule. Also, we reindex jobs so 

that 1,21,121 ++ +≤+ jjjj pppp  for nj ,,2,1 Κ= . 

Lemma 4Lemma 4Lemma 4Lemma 4    For problem ∑ jWIPF ||2 ,  

.)2(2
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ProProProPro

of.of.of.of. Consider any schedule σ . Let ][ jJ  denote the 

job that occupies the j th position in σ ; ][ jC , 

][1 jp , and ][2 jp  are defined accordingly. Note that  

.][24][12][ jjj pwpwWIP +=  

We derive the lower bound stated in the 

lemma by combing two lower bounds. The first of 

these comes from  
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for nj ,,3,2 Κ= . Note that since 21 ww ≤ , ][11 jpw  is 

deducted and ][12 jpw  is added to tighten the bound. 

From (5) and (6), 

)7(.)(

)(

)()(

)1(

1
][24

1
][112

1

1
][21][11

2
][24

2
][112

1

1
][21

][11][24][12

1
][

∑∑

∑

∑∑∑

∑

==

−

=

==

−

=

=

+−

+−+≥

+−+−

+−++≥

n

j
j

n

j
j

n

j
jj

n

j
j

n

j
j

n

j
j

jjj

n

j
j

pwpww

pjnwpnw

pwpwwpjnw

pwnpwpw

WIP

The 

second lower bound comes from  

][24][12

1

1
][11][ jj

j

k
kj pwpwpwWIP ++≥ ∑

−

=

    (8) 

for nj ,,3,2 Κ= . From (5) and (8), 

)9(.

)(

1
][24

1
][12

1

1
][21][24][12

1
][

∑∑

∑∑

==

−

==

+

+−++≥

n

j
j

n

j
j

n

j
jjj

n

j
j

pwpw

pjnwpwpwWIP

 

Recall that jobs are indexed in their 
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The following lemma restates a simple rule on the 

minimum and maximum numbers for the sake of 

completeness of the proof. 

Lemma 5Lemma 5Lemma 5Lemma 5 We have that 

)/())((|| 21,11,12 αβαβ ++−≤− ++ kkkk pppp  

for .1,,2,1 −= nk Κ  

Proof.Proof.Proof.Proof. First, consider the case where 

1,121,12 || ++ −=− kkkk pppp . Suppose that 

)/())(( 21,11,12 αβαβ ++−>− ++ kkkk pppp . The 

inequality can be rewritten as 1,12 22 +> kk pp βα , and 

the right side of the inequality is βαβ 22 1,1 >+kp . 

Since β≤kp2 , we have a contradiction. We can 

apply the similar argument for the other case.  

Theorem 4Theorem 4Theorem 4Theorem 4 For problem ∑ jWIPF ||2 , 

)/(2*/1 βαβ +≤zz H , and this bound is tight in limit 

where 1Hz  is a solution value of H1. 

Proof.Proof.Proof.Proof. Note that a schedule by H1 does not 
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contain any wait time before machine 2. First, we 

have  
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convenience. Using Lemma 5, we have 

)13(.
2}2)(2{

2
2

2)2(

)/()()()(

2

1111 112

1
24

1

1
24

1
112

21111
2

11

1111

1

βα
α

βα

αβα

βα
β

βαβ

+
+

+

−+

++
+

≤

+−+

+−








+−+

++≤

∑

∑

∑∑

∑

∑

=

=

==

=

=

pnwpww

pw
Yw

pwpww

appnwpYw

Ywpnw

WIP

n

j j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

Note 

that  

.24

2)(2)(24

)(22224

2224

2)(2

12

112122

121122

1222

12

ββ

ββαβ

αββββ

ααββ

αβα

ww

wwwwww

wwwwww

wwww

ww

−≤

−−−−+=

−+−+−=

−+−=

−+

 

From (13) and (14), 

}.}{min

}2(22
2

2

}2(2{
2

2

2

111

1 112
1

241

111

1 112

1
24

1

1

jnj

n

j j

n

j
j

n

j j
n

j
j

n

j
j

pnw

pwwpwYw

pnw

pww
pw

Yw

WIP

≤≤

=
=

=

=

=

+




−++
+

≤

+
+

+

−
++

+
≤

∑∑

∑
∑

∑

βα
β

βα
α

βα

β

βα
β

 

Then, the worst case bound follows from Lemma 4. 

Now, we show that the bound is tight in limit. 

Consider the following instance. There are m2  

jobs with processing times β=jp1 , α=jp2  for 

nj ,,2,1 Κ=  and α=jp1  and β=jp2  for 

mmmj 2,,2,1 Κ++= . Since jj pp 21 +  is equal for 

all jobs, any job sequence can be a result from the 

heuristic. Suppose that )2,,2,1(1 mH Κ=σ . Then, 

solution value is 

)()()2( 42

2

1

1 βαβαβ ++++−= mwmwmmwz H . An 

optimal schedule is ),2,,2,2,1,1(* mmmm Κ++=σ  

and solution value is 

)()(* 2

2

1

2

1 βααβ +++−= mwmwmmwz  ).(4 βα ++ mw  

The relative error bound goes to )/(2 βαβ +  for 
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7. 7. 7. 7. Summary and DiscussionsSummary and DiscussionsSummary and DiscussionsSummary and Discussions    

    

We have explored a new flow-shop 

scheduling problem where a different WIP (work-

in-process) state has different weight on the 

duration time. Specifically, the two machine flow-

shop problem is considered. Even if the problem 

seems simple, it is difficult to solve because 

problem ∑ jWIPF ||2  is a general case of 

∑ jCF ||2  where problem ∑ jCF ||2  is already 

NP-Hard in the strong sense. We establish some 

preliminary results and several special cases. We 

also develop a heuristic and provide an upper-

bound on relative error which is tight in limit. 

For future research, we want to develop 

more heuristics and study their performance. We 

also want to explore more general cases of the 

problem such as different weights on WIP costs 

for different jobs. This makes the problem harder, 

but it is more realistic. 

    

ReferencesReferencesReferencesReferences    

Conway R., W. Maxwekk, J.O. McClain, and L.J. 

Thomas (1988), The role of work-in-process 

inventory in serial production lines, Operations 

Research, 36, 229-241. 

Croce F.D., V. Narayan, and R. Tadei (1996), The 

two-machine total completion time flow shop 

problem, European Journal of Operational 

Research, 90, 227-237. 

Croce F.D., M. Ghirardi, and R. Tadei (2002), An 

improved branch-and-bound algorithm for the 

two machine total completion time flow shop 

problem, European Journal of Operational 

Research, 139, 293-301. 

Garey, M.R., D.S. Johnson, and R. Sethi (1976), 

The complexity of flowshop and jobshop 

scheduling, Mathematics of Operations 

Research, 1, 117-129. 

Gonzalez, T. and S. Sahni (1978) Flowshop and job 

shop schedules: Complexity and approximation, 

Oper. Res., 26, 36-52 

Graham, R.L., E.L. Lawler, J.K. Lenstra, and A.H.G. 

Rinnooy Kan (1979), Optimization and 

approximation in deterministic sequencing and 

scheduling: A survey, Annals of Discrete 

Mathematics, 5, 287-326. 

Hall, N.G. and C. Sriskandarahjah (1996), A survey 

of machine scheduling problems with blocking 

and no-wait in process, Operations Research, 

44, 510-525. 

Hoogeveen, J.A. and T. Kawaguchi (1999), 

Minimizing total completion time in a two-

machine flowshop: analysis of special cases, 

Mathematics of Operations Research, 24, 887-

910. 

Kamoun, H C. and Srikandarajah (1993). The 

Complexity of Scheduling Jobs in Repetitive 

Manufacturing Systems, European Journal of 

Operational Research, 70, 350-364. 

Kanet, J.J. and V. Sridaharan. (2000), Scheduling 

with inserted idle time: problem taxonomy and 

literature review, Operations Research, 48, 

99-110. 

Matsuo, H. (1990), Cyclic Sequencing Problems in 

the Two-Machine Permutation Flow Shop: 

Complexity, Worst-Case, and Average-Case 

Analysis, Naval Research Logistics, 37, 674-

694 

Röck, H. (1984) Some New Results in No-wait 

Flowshop Scheduling, Zeitschrift Für Opns. 

Res., 28, 1-16. 

Wang, C, C. Chu, and J.-M. Proth (1996), Efficient 

heuristic and optimal approaches for 

∑ iCFn //2/  scheduling problems, Int. J. 

Production Economics, 44, 225-237. 


	MAIN
	TABLE OF CONTENTS

