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Abstract

This paper considers a new flow-shop
scheduling problem where a different WIP (work—
in-process) state has different weight on the
duration time.

For the two machine case, the recognition
version is NP-Complete in the strong sense.
Several special cases are solved by different
polynomial time algorithms. Finally, we develop a
heuristic and provide an upper—-bound on relative

error which is tight in limit.

1. Introduction.

The scheduling literature considers a wide
variety of problems and objectives. One
important objective that has not received much
attention is the work—in—process cost (WIP)
associated with value that is added during the
production process. In the production process, as
labor and material are added to the product, the
value of the product and hence the WIP costs
increase. Hence, a factory may be able to reduce
the total WIP costs by keeping WIP inventory at
the earlier stage of manufacturing process
instead of keeping inventory at the later stage.

Minimizing WIP costs is an important
criterion for many manufacturing facilities.
Conway et al. (1988) describes the role of WIP in
serial production lines and investigates the
behavior of lines buffered with storage and
explores the distribution and quantity of WIP
inventory that accumulates.

Any scheduling problem with the objective of

minimizing total completion time minimizes the
average WIP inventory during the entire
manufacturing process of jobs. In this case, the
WIP cost remains the same throughout the
manufacturing process.

With the minimum-wait objectives, the cyclic
sequencing problem minimizes the average WIP
inventory of partially finished jobs subject to the
constraint that the jobs have to be produced at
the maximum throughput rate. A difference from
the regular scheduling problem with the objective
of minimizing total completion time is that the
problem recognizes the WIP cost only when jobs
are not processed by a machine. However, the
WIP cost remains the same for the entire
manufacturing process. For surveys on the
problem, see Kamoun and Srikandarajah (1993)
and Matsuo (1990).

In this paper, we consider a new flow-shop
scheduling problem where a different WIP state
has different weight on the duration time. The
value is added while a raw material is processed
through the flow—shop. We consider the two
machine flow—-shop case for this paper.

The two machine flow—shop problem with the
objective of minimizing total completion time is a
well known problem. The recognition version of
this problem is known to be NP-Complete in the
strong sense (Garey et al. ,1979). Several studies
are done and most of them are focused on
developing efficient algorithms (Wang et al.,
1996;Hoogeveen and Kawaguchi, 1999;Croce et
al., 1996, 2002).

In the next section, we describe the problem
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and introduce some notation. Then, we establish
complexity of the problem. Also, some
preliminary results and solutions for special
cases are presented. Finally, we develop a
heuristic and provide an upper—-bound on relative

error which is tight in limit.

2. Description of Problem

We assume that all jobs are available at time
zero. Let N be a set of jobs N={1,2,K ,n} where
n is the number of jobs. Following the standard
scheduling classification schedule of Graham et al.

(1979), we refer to the problem of minimizing the
WIP cost in a flow shop as F2|| ZWIPj where

WIP, is work in process cost for job j.In a two

machine system, there are four different types of

WIP costs:

® Type 1: before a job is put into the first
machine (value of raw material)

® Type 2: ajob is being processed by machine 1

(value of raw material + added components at

machine 1)
® Type 3: after a job is processed by machine 1

but before the job is put into machine 2 (value

of raw material + added components at
machine 1 + labor and depreciation of machine

D
® Type 4: ajob is being processed by machine 2

(value of raw material + added components at

machine 1 +labor and depreciation of machine

1 + added components at machine 2)

Now, we assign different weight (value) to
each WIP inventory. Let w, be weight for Type i
inventory for i=1234. Then, we have Remark 1.
Remark 1 For problem F2|% WIP,

w, Sw, Swy; <w,.
A schedule defines a job order for each machine

and a permutation schedule is a schedule in which

every machine has the same job order and no
preemption is allowed. Let 7;; be waiting time of
job j before it starts processing on machine 1
and T,, be waiting time before job ; starts
processing on machine 2 for j=12K ,n,
respectively. The completion time of job j is
C,=T,+p,;+T,, +p,, where p, is processing
time of job j on machine i for i=12. While the
actual weight might vary based on the job, most of
the jobs on a flow line are similar. Consequently,
one reasonable model is that the value added from
a given operation is proportional to the time spent
on the machine. Thus, the WIP cost for job j is
WIP = wT,, +w,p,; +w;T,, +w,p,;. (1)
are fixed regardless

Note that w,p,; and w,p,,

of job sequence.

3. Complexity of Problem F2| > WIP,

The following remark establishes that problem
F212¢,
F2| S WP, .

Remark 2 /f w, = w;, then problem F2| Y WIP, Iis
identical to problem F2|}.C, .

is a special case of problem

Proof. Note that C, =T, + p,, +T,, + p,; where
Dy and p,; are fixed for any job sequence. Let

w=w, =w,. If we divide WIP, by w, then

Wipj -7, + Wa Dy
w

WaDr
+T,, + L.
— J —
w w

Since w,p,;/w and w,p,;/w remain the

same for any schedule, the objective of problem
F2|| X WIP, is now to minimize > (T, +T,,).

This is the same as minimizing ZCj . Hence, we
have the result. [
The following theorem establishes the

complexity of problem F2]| ZWIPj )

Theorem 1 7The recognition version of problem

F2|| 2 WIP, is NP-Complete in the strong sense.
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Proof. Note that the recognition version of
problem F2| > C, is NP-Complete in the strong

sense (Garey et al., 1979). From Remark 2,
F2||>.C, is a special case of F2| Y WIP; . []

The following theorem establishes the
complexity of problem F2]| ZWIPj when
Py =pPn=A=p,.

Theorem 2 The recognition version of problem
F2| ZWIPj with p,, =p,=A =p,, 1s NP-
Complete in the strong sense.

Proof. Note that the recognition version of
problem F2|>C, with p,=p,=A=p, is
NP-Complete in the strong sense (Hoogeveen and
Kawaguchi, 1999). From Remark 2, F2||}.C; isa
special case of F2|| Y WIP; . ]

The following lemma establishes the
relationship between problem F2|| Y WIP, and
problem F2|no—wait|}.C; .

Lemma 1 [ (n-1)w, <w,, then problem

F2|| 2. WIP, is identical to problem
F2|no—wait|).C; .

Proof. Let o* be an optimal schedule for
problem F2|| > WIP, . Note that in o *, the first job
requires no inserted idle time on machine 1 since
no job is scheduled ahead on machine 2.

We assume that in o*, jobs are scheduled in
their index order. Suppose that job 2 has wait time
before machine 2, say Af> 0. Inserting idle time
At >0 on machine 1 for job 2 leads to at most At
additional wait time for job 2 and each subsequent
job before machine 1 compared to a schedule
without an inserted idle time. Without inserted idle
time, the schedule must have at least Az idle time
on machine 2.

Hence, delaying job 2 by Ar on machine 1
can create additional wait time of at most (n—1)A¢
before machine 1 in total instead of Az wait time
before machine 2 for job 2. Similarly, delaying job

3 by At on machine 1 can create additional wait

time of at most (n—2)At before machine 1 instead

of At wait time on machine 2 and so on.
Therefore, it is sufficient to have

(n—1w,At <w,At for an optimal schedule to have

no idle time on machine 2. []

The following corollary establishes
complexity of problem F2]| ZWIPj with

(n=Dw, <w,.

Corollary 1 The recognition version of problem
F2|| 2 WIP, with (n—-1)w, <w, is NP-Complete in
the strong sense.

Proof. Note that the recognition version of
problem F2|no - wait | ZCj is NP-Complete in
the strong sense (Rock, 1984). From Lemma 2,
problem F2|no—wait|) C, is identical to
problem F2| > WIP, with (n—1)w, <w,.[]

4. Preliminary Results

In this section, we establish that two
important characteristics of the problem. We begin
with the following lemma.

Lemma 2 For problem F2| Y WIP, , there exists
an optimal permutation schedule.

Proof. We use pair wise interchange argument.
Suppose that in a unique optimal schedule, jobs
are processed in their index order. For j,ke N,
suppose that jobs j and k for j<k are
processed consecutively on machine 1 and job &
precedes job j on machine 2.

If p, >p,,;, then switching processing order
on machine 2 decreases solution value, a
contradiction. If p,, <p,;, then we need to
consider two cases. Suppose p, > p,; - Then,
switching processing order on machine 1 does not
increase solution value, a contradiction.
Alternatively, suppose that p, < py; - By switching
processing order on machine 1, C,; is decreased

by p, and C, isincreased by p,;,a
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contradiction. [

As a result of Lemma 2, we only consider a
permutation schedule.
Lemma 3 For problem F2| Y WIP, , some optimal
schedule requires inserted idle time on machine 1.
Proof. Consider the instance where n=2,
p, =p,=1,and p, =p, =2. Note that any job
sequence is optimal because the two jobs are
identical. Without loss of generality, we assume
that (1,2) is an optimal schedule. Note that job 1
can start as early as at time O and completes at
time 3. Hence, C, =1+2=3.Job 2 can start at
time 1 on machine 1 but then, job 2 must wait until
job 1 completes on machine 2 at time 3. However,
since w; >w,, it is optimal to start job 2 on
machine 2 at time 2. Hence, for job 2, one unit of
inserted idle time is required on machine 1. [

As a result of Lemma 3, when we describe an
optimal schedule, we may need to specify a job
order and start time (or completion time) of each

job. Having inserted idle time is a crucial

difference between problems F2||2Cj and
F2|| 2. WIP, . As a remark, for problem F2[>.C;,
there exists at least one optimal permutation
schedule without any idle time on machine 1

(Conway et al., 1967).
5. Solutions for Special Cases

In this section, we establish several special
cases for problem F2|| Y WIP; . The following

remark establishes a special case for the problem.
Remark 3 For problem F2| 3’ WIP, , suppose that

we schedule jobs in SPT order of processing time

on machine 1 without inserted idle time on
machine 1. If T,; =0 forall jeN, then this

schedule is optimal.

Proof. Since we schedule jobs in SPT order of

processing time on machine 1, 7 7;, is

minimized. Since T,, =0 for all je N, from (1),
we have the result. [
Corollary 2 The SPT rule without inserted idle
time on machine 1 is optimal for
F2|p; =p; | X WIP, .
Proof. Since p,; = p,, SPT rule without inserted idle
time on machine 1 guarantees that there exists no
idle time before a job is put into machine 2. From
Remark 3, SPT rule is optimal for
F2|p,=p, |ZWIPj .0

The following remark establishes the third

special case for the problem.
Remark 4 For problem F2|’ WIP, , suppose that

p; 2 p,; forall jeN. Then, SPT order of
processing time on machine 1 without inserted
idle time on machine 1 Is optimal.

Proof. Since we schedule jobs in SPT order of

processing time on machine 1 without inserted

idle time on machine 1, Zj.lel is minimized. Also,

J

T,,=0 forall jeN because p,, 2p,, forall
jeN .l

Note that the condition in Remark 4 is usually
true in real world since final assembly generally
takes shorter time than fabrication process.
Remark 5 /f w, =0, then any job sequence is
optimal for problem F2| Y WIP; .
Proof. Since w, =0, for any jeN, job j can
be delayed on machine 1 so that T,,=0. Hence,
any job sequence is optimal for problem
F2| Y wipP, . [l

The next theorem establishes that if
processing times on machine 2 are the same for
all jobs, then SPT order of processing time on
machine 1 without any wait time before machine 2
1s optimal.
Theorem 3 For problem F2|| ZWIPj , suppose that
Do = Pwn =A =p,, . Then, SPT order of processing

time on machine 1 without any wait time before
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machine 2 is optimal.

Proof. Let p, =p,; for j=12,K,n. We need to
consider the following three cases. We assume
that jobs are indexed in nondecreasing order of
)2¥ for j=12K,n.

Case l. p,<p,.

Note that WIP, = w,p,, +w,p,, . Since p, <p,,,
SPT order of processing time on machine 1 does
not generate any wait time before machine 2.
From Remark3, the result holds.

Case 2. p,>p,,-

Note that WIP, =w,p,, + w,p,, . Since w;, >w,,
it 1s optimal that we schedule jobs 2,3,K ,n such
that the jobs do not wait before machine 2. So, we
delay each job by p, —-p,; for j=23K,n on
machine 1. Note that this does not create any
additional wait time compared to a schedule with
no inserted idle time on machine 1. Then, for
j=23K,n,

WIP, =wip, +(j=2)p, + p, — P} +
WDy + WDy (2)
If we add up for j=12K ,n, then
Swie,
Jj=1

=w (n=1)py, +W12(J -Dp, _leplj

Jj=2

Z(szlj + W4p2j)

J=1

=w, {npll n(n — l)pz zpu}

Z(szlj + W4p2j)'

J=1

Notice that Z'j’.zl WIP, is minimized as long as

job 1 is scheduled first where argmin,,, p,; =1.
Hence, we have the result.
Case 3. p,<p,<p,-

Let o be a schedule generated by SPT order

of processing time on machine 1 without any wait

time before machine 2. Since p,, <p, <p,,, there

exists ke N suchthat p, <p, <p,,,, for
ke{3,4K ,n—-1}. Note that WIP,(c)=w,p,, +w,p, .
For 2<j<k, we use the result from Case 2.
From (2),
WIP,(0) = wi{py, +(j~2)P, + By — Py} +

Woby, + WaDs) ()
for j=23K,k.For j=k+1, we have
WIP,(0) = wip,, +(k=DP,} + wyp,, +wypy,. (4)
Similarly, for j>k+2, we have

-1

W[P (@)=wip, +(k-Dp,}+w ZPlquPU

u=k+1

+W, Py
We use job pair wise interchange argument.
Suppose there exists a unique optimal schedule
where for some j,ke N, job j precedes job k
and p,;, > p, . Letjobs ¢ and r be the first pair
of such jobs where ¢ and r are processed
consecutively and p,, > p,,.

If ¢g<k and r>k+1, then the proofs are
similar to those in Cases 1 and 2, respectively.
Suppose that r=k and g=k+1.Let o' be the
new schedule. Then,

WIP,(c") = wipy, +(k=2)py} + Wy py, + WD, and

WIP. (")
=wi{p, +(k-Dp, +(P1q -p)+ (P, =P}
TW D1+ WP,
=wiipy +(k=Dpy + piy =P} WPy, + WD,
Note that

wi(Py = pu) + Wy (P + Prsa)
<wi(py, — i)+ W (P, + py,)

since p,, > p, . Hence, from (3) and (4),

WIP, (c') + WIP,(c")

=w {2p, +2k-3)p, + Py
+wy(pyy +Ps)

2w {2p; + 2k =3)p, + Py — Pyt + Wa (P + Prar)
+ W, (P +P2,k+1)

=WIP,(c") + WIP,(c").

_plr}+w2(plq +plr)

For

completion time, C,(o',)=p,, +(k-Dp, +p, and
C.(c'y)=p,+k-Dp, + Py - Also,
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Cin(o)=py+k=Dp, + pis and
Cin(oy)=py +(k=1D)p, + Py + Pyyn - Hence,
C,(6'1)=C(oy) and C.(0',)=C,(0y).

Therefore, we have the result. [J
6. A Heuristic

In this section, we introduce a heuristic and
analyze the worst case behavior of the heuristic.
The heuristic is based on the approximation
algorithm for problem F2|| ZCj presented by
Gonzalez and Sahni (1978).

The approximation algorithm by Gonzalez and
Sahni (1978) proceeds by reindexing the jobs in
order of nondecreasing p,, +p,; for j=12K ,n,
settling ties arbitrarily, and by subsequently
scheduling jobs in that order in M, and M, such
that unnecessary idle time is avoided. This leads

to the set of completion times:

G =pus Cy =pi + Py, and

C,=C,,+p,;, C;=max{C,, ,,C;}+p,;,

for j=23K ,n.

Note that this approximation algorithm runs in
O(nlogn) time and the resulting schedule is a
permutation schedule with no idle time on M,
between the execution of the jobs.

6.1 Description

In order to apply the heuristic to problem
F2|| > WIP, , we modify the algorithm as follows.

Since w, <w,, for each job, we eliminate wait time
before machine 2 as much as possible. A new
heuristic proceeds by reindexing the jobs in order
of nondecreasing p; +p,, for j=12K,n,
settling ties arbitrarily, and sequentially schedules
jobs in that order in M, and M, as the heuristic
by Gonzalez and Sahni (1978). However, while
minimizing completion time, jobs are delayed on
machine 1 so that it does not create any wait time

before machine 2. This leads to the set of

completion times:

G =Dpus Cy =pi + Py, and

G, =max{C,,, +p,,C,,,}, C,; =C,, + p,;,
for j=23K,n.
The new heuristic is different from the heuristic
by Gonzalez and Sahni (1978) because it inserts
idle time on machine 1 to eliminate wait time
before machine 2. With this assumption, our
problem becomes similar to flow—shop problem
with no—wait time before machine 2. As a remark,
the recognition version of
problem F2|no—wait | ),C, is NP-Complete in the
strong sense (Rock, 1984). For a survey on this
problem, see Hall and Sriskandarahjah (1996) and
Kanet and Sridahran (2000). We now formally
describe the heuristic.
Heuristic H1
0. Reindex jobs so that p,; +p,; < p,;, +p,,;, for
j=12K ,n.
1. Schedule job 1 first so that C,, =p,, and
Cyy=py+Dy-
Schedule jobs 2,3,K,n in their index order
onM, and M, such that max{C,; , +p,;,C, , ,}
and C,;=C;+p,, for j=23K,n
When there exist ties, break them arbitrarily.
2. From a completed schedule, calculate WIP, for

j=12K ,n.
Output Z'j’.zl WIP, and stop.

In Step O, reindexing the jobs requires
O(nlogn) time. Since all the other operations
require O(n) time, the time requirement of H1 is
O(nlogn) time.

6.2 An Upper Bound on the Relative Error

In this section, we analyze heuristic H1 and
show that the worst case bound on relative error
is 28/ a+ pB) where a and g denote the
minimum and maximum processing time of all

operations, and the bound is tight in limit.
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In order to analyze the worst case behavior of
the heuristic, we follow the approach by
Hoogeveen and Kawaguch (1999). They analyze
the heuristic by Gonzalez and Sahni (1978) and
establish the same bound for problem F2|| ZCj .
Our analysis is more complicated than theirs due
to a different weight on each type of WIP
inventory.

We begin by establishing a lower bound for an
optimal schedule. Throughout this section, let o*
be an optimal schedule. Also, we reindex jobs so
that p,, + p,;
Lemma 4 For problem F2| Y WIP;,

< Pijua T Pajn for j=12XK,n.

ZZC]- (o%) 2 %[Zn; {(n _j)(plj +p2j)}+nwl min{plj}

Pro
+2W4Zp2j + (2w, —wl)Zplj .
J=1 J=1

of. Consider any schedule o . Let J,; denote the

job that occupies the jth position in o ; C»
Py and py;, are defined accordingly. Note that
WIB ) = Wy Pyjy + WaPoy-

We derive the lower bound stated in the
lemma by combing two lower bounds. The first of
these comes from

Jj-1

WIE; 2w py, + Wz;l’ztk] HWy Py = WPy
+ WPy )+ WaPyj

for j=23K,n.Note that since w, <w,, wpy; is

deducted and w,p,;, is added to tighten the bound.

From (5) and (6),

ZWI [/1

2 Wy Py Waloyy +(n=Dwipy ;) +
n—1

w ) (n— Py +ow, — Wl)zpl[j] +W4Zp2[j] The
Jj=1
n-1

2 AW Py W Z(" =Py +
=
(W, =W)X Pyjy +Wa 2 Pogjy- ™
= =

second lower bound comes from

Jj-1

WIP,] = lepl[k] Wy D1 + WePor g (8)

for j=23,K,n.From (5) and (8),
n n—1 .
Z; WIR ) 2 Wy Dy jy + WaDogjy + W) Zl(" =Py +
J= j=
Wy 2 Pijy HWa 2 Pogjy- ©)
j=1 =1

Recall that jobs are indexed in their

nondecreasing order of p,; +p,; for j=12K, n.

Hence, Zj: (n _j)(pu + pzl/') 2 z’; i(n ])(p1[/] + pzm) .
By adding up (7) and (9), we have

ZZWI 1

n-1

21w, pyy + w2 (0= )Py + Do) +
j=1

(2w, - WI)Z% Pipt 2w, Z; Py
J= J=

n-1

2 nw minlSan {plj}+WIZ(n_j)(plj +p2j)+
Jj=1

0
(2w, _Wl)zplj +2W4ZP2,,-- (10)
= =

The following lemma restates a simple rule on the
minimum and maximum numbers for the sake of
completeness of the proof.
Lemma 5 We have that

| Dok = Pt IS (B=)(Py iy + Do) (B + )
for k=12K ,n—1.
Proof. First, consider the case where
|p2k _pl,k+1 |: sz _pl,k+l . Suppose that
P~ Pria > (B= )Py + Poy) (B+a). The
inequality can be rewritten as 2ap,, >2fp,,.,, and
the right side of the inequality is 2/p,,,, >2fc .
Since p,, <, we have a contradiction. We can
apply the similar argument for the other case. [
Theorem 4 For problem F2| Y WIP;,
2" 1 z%<2B e+ B), and this bound is tight in limit

Hl

where z" Is a solution value of H1.

Proof. Note that a schedule by H1 does not
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contain any wait time before machine 2. First, we
have

WIP, = w,p,, + W, Py,

For j=23K,n,

-1
WIP, < W1|:p11 + max{p,;, pl,k+1}:| —W Dy
=

TWy Dy WDy,

Using the equality

2max{p,., Pryat = Pox + Prant| Py — Pig |, We have

2WIP,

J-1 J-1
<2wpy, + lepzk +lepl,k+l +
k=1 s

j7
W12| P = Prin | _2W1P1j + 2W2p1j + 2W4p2j
k=1

J-1 J-1
=wWpn +lep2k +leplk

k=1 k=1
From

i-
W12| Pa = Prin |_W1p1j +2W2P1j +2W4P2j~ (12)
k=1
(11) and (12), it follows that

23 WP,

J=1

j-1
S(l’l—l)Wlpll +le(n_j)(plj +p2.f)+

n-1 j

sz|sz Piia | lepu +2W22p1/ +2W4zp2/
=1 k=1 j=2 Jj=1 J=1

-1 J

n
<nwpy WY +w D > pyy —Pia | —

J=lk=1

n n n
W zplj + 2WzZP1,~ + 2W4ZP2,~
j=2 J=1 J=1

j-1
where Y =w, ) (n—j)p,, + p,;,) for notational
& . .

convenience. Using Lemma 5, we have

25 wip,

J=1

<nwp, +wY+

{Wl(Y"‘ipu)_m"ﬁ(pn +p21)}(ﬂ—a)/(ﬂ+a)

u ” Note
+(2W2 _W1)Zp1j +2W4Zp2j

= =
2wlﬁY u

+2w
a+f 42172,
{2w2(a+ﬂ)—2wla}2'}:1pu 2nw,ap,,
+ . (13)
a+pf a+pf

that

2w, (o + fB) - 2wa
=4w, [ -2w, B+ 2w,a - 2w,
=4w,B-2w,B+2w, B =2w S +2(w, - W)
= 4w, f+2(w, —w))a = 2(w, —w) 2w f
<4w,[ -2w,p.

From (13) and (14),

2> WIP,
j=1
n 2(2W — W, YL :
< 2w pY 2w, 3 s + { 2 1}ﬂzj_1 P
a+p = a+p
i 2nwap,,
a+p
< 2p

wY + 2w y 4202w, —w Y .
OH-,B{ 1 4;}72] (2w, 1}21:1171]

+ nw, minlgjgn{plj}}.
Then, the worst case bound follows from Lemma 4.
Now, we show that the bound is tight in limit.
Consider the following instance. There are 2m
=B, p,;=a for
=p for

jobs with processing times Pi;
j=12K,n and p,,=a and p,,;
j=m+1,m+2K 2m. Since p,; +p,; is equal for
all jobs, any job sequence can be a result from the
heuristic. Suppose that o' =(1,2,K ,2m). Then,
solution value is

2" =w,2m* —m)B+w,m(a+ B)+w,m(a+ ). An
optimal schedule is o*=(m+1,1,m+2,2,K ,2m,m)
and solution value is

Z*=w (m* —m)B+wm’a+w,m(a+pB) +wm(a+p).

The relative error bound goes to 28/(a+ ) for
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m— oo, [
7. Summary and Discussions

We have explored a new flow-shop
scheduling problem where a different WIP (work—
in-process) state has different weight on the
duration time. Specifically, the two machine flow—
shop problem is considered. Even if the problem

seems simple, it is difficult to solve because

problem F2| > WIP, is a general case of
F2||>.C, where problem F2||>.C; is already
NP-Hard in the strong sense. We establish some
preliminary results and several special cases. We
also develop a heuristic and provide an upper-—
bound on relative error which is tight in limit.
For future research, we want to develop
more heuristics and study their performance. We
also want to explore more general cases of the
problem such as different weights on WIP costs
for different jobs. This makes the problem harder,

but it is more realistic.
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