• Title/Summary/Keyword: WATER QUANTITY DIVISION

Search Result 133, Processing Time 0.025 seconds

The Effect of Emission Control Using Electrolytic Seawater Scrubber

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.373-377
    • /
    • 2009
  • It is well known that SOx and NOx concentration has a considerable influence on the $N_2O$ emission of the greenhouse gas properties. The quantity of SOx generated during combustion, on fuel specific basis, is directly related to the sulfur content of the fuel oil. However, restricting the fuel oil sulfur content is only a partial response to limiting the overall quantity of SOx emissions, as there remains no over control on the fuel oil consumption other than the commercial pressure which have always directed the attention. This study was carried out as a new basic experiment method of emission control, manly targeted to the vessel. In the experiment, where the scrubbing was achieved through spray tower with high alkaline water made from the electrolysis of seawater, the combined action was to neutralize the exhaust gases (SOx, PM, CO etc.), dilute it, and wash it out. The results showed that SOx reduction of around 95 percent or over could be achieved when using in the high alkaline water, and also leaded to a reduction in the stability of the each pollutant components including the PM (Particulate Matter). The results suggest that the seawater electrolysis method has a very effective reduction of emissions without heavy cost, or catalysts particularly on board.

Characteristics of Excess Water Dewatered Concrete Using Permeable Liner (투수시트를 적용하여 잉여수를 탈수한 콘크리트의 강도 특성)

  • Jeon, Kyu-Nam;An, Gi-Hong;Lee, Jong-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.675-682
    • /
    • 2013
  • In this study, to enhance the quality of concrete surface by removing the surplus water, permeable liner attached the euroform was applied for manufacturing concrete specimens. Various kinds of concrete mixtures with different water to binder ratios were applied and the strength properties of the hardened concrete surfaces were evaluated at different heights. Experimental results showed that the rebound values by schmidt hammer test and the compressive strengths on the surfaces of concrete specimens were increased as proportion to the amount of mixture water which is dependent on the water to binder ratio of each concrete mixture, and more enhancements were observed on the middle and lower specimen surfaces than the upper region. SEM analysis also showed that much denser hydrate structures were observed on the specimen surfaces by the application of the permeable liner while similar hydrate formations were occurred regardless of surface treatment conditions. From the MIP test results of the concrete surfaces, it was observed that, by the application of permeable liner, the pore volume below $0.01{\mu}m$ was decreased with a maximum of 50% resulting in the densification of pore structures.

A study for design method minimizing wetland's influence by tunnel excavation

  • Choo Seokyean;Koh Sungyil;Lee Jongho;Park Kyungho;Suh Youngho;Jue Kwangsue;Lee Duhwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.88-94
    • /
    • 2003
  • In recent, as Republic of Korea has been interested in environmental problem increasingly and became a member of many organizations or institutions related to environmental preservation such as a Ramsar convention, fundamental and completed methods to prevent ground water's drying up and leakage in tunnel excavation are requested. In this paper, we have studied the anticipated problems by tunnel excavation under the wetland and described the effective designed method to maintain the wetland's ecosystem environment. To accomplish this purpose, firstly, we investigated the wetland's ecosystem, ground's hydraulic properties and analysed the foreign similar case for tunnel excavation near the wetland. And by numerical analysis, we analyzed the runoff and infiltration quantity of water and hydraulic behaviour properties by saturation and unsaturation concept in rock mass and wetland. Finally, we established the effective countermeasure to minimize the ecosystem's bad influence by tunnel excavation.

  • PDF

Analysis of nano-cluster formation in the PECVD process

  • Yun, Yongsup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.144-148
    • /
    • 2013
  • In this paper, the ultra water-repellent thin films were prepared by RF PECVD. On the basis of surface morphology, chemical bonding states and plasma diagnostics, a formation model of clusters for the ultra water-repellent films was discussed from considerations of formation process and laser scattering results. Moreover, using laser scattering method, the relative change of quantity of nano-clusters or size of agglomerates could be confirmed. From the results, the films were deposited with nano-clusters and those of agglomerates, which formed in organosilicon plasma, and formation of agglomerates were depended on the deposition time.

Grain Yield and Water Use Efficiency as Affected by Irrigation at Different Growth Stages

  • Kim, Wook-Han;Hong, Byung-Hee;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.330-338
    • /
    • 1999
  • Extensive research has been conducted on effects of drought stress on growth and development of soybean but information is rather restricted on the limited-irrigation system by way of precaution against a long-term drought condition in the future. The experiment for limited-irrigation was conducted in transparent vinyl shelter at Asian Vegetable Research and Development Center (AVRDC), Taiwan in 1997. Two soybean varieties, Hwangkeum and AGS292, improved in Korea and AVRDC, respectively were used for this experiment. The relationships between normalized transpiration rate (NTR) and fraction of transpirable soil water (FTSW) in both varieties were similar that the NTR was unchanged until FTSW dropped to about 0.5 or 0.6. At FTSW less than those values, NTR declined rapidly. Days required to harvest in both varieties were significantly prolonged at IR6 treatment compared to any other treatments. Daily mean transpiration rate was significantly higher at IR5 treatment, as averaged over varieties. Similarly, water use efficiency was also high at 1R5 treatment. In both varieties, seed yield was the greatest at the IR5 treatment, as compared to any other limited-irrigation treatments, due to the increased seed number and high transpirational water use efficiency. The indices of input water and seed yield for the different limited-irrigation treatments against control indicated that Hwangkeum produced 59.6% or 60.7% of seed yield using 36.1% or 44.9% of input water, as compared to control, by irrigation at only R5 or R6 stages, respectively. The AGS292 produced 56.1% of seed yield with 35.4% of input water of control, when irrigated at R5 stage. The results of this study have elucidated that the limited irrigation at R5 stage in soybean can be minimized yield loss with such small quantity of water under the environment of long-term drought stress and the expected shortage of agricultural water in the future.

  • PDF

Computed tomography investigation of the three-dimensional structure and production method of White Porcelain Water Dropper with Openwork Lotus Scroll Design and Eight Trigram Design in Cobalt-blue Underglaze (CT 조사를 통한 청화백자투각연당 초팔괘문연적의 3차원적 구조와 제작방법에 대한 고찰)

  • Na, Ahyoung;Hwang, Hyunsung
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.1-8
    • /
    • 2021
  • This study investigated White Porcelain Water Dropper with Openwork Lotus Scroll Design and Eight Trigram Design in Cobalt-blue Underglaze (hereinafter, the "water dropper") in the collection of the National Museum of Korea using computed tomography (CT). A replica was produced to examine both the structure and its original production method. The CT scanning identified no joint lines or pores in the clay, which suggests that the body (the lower part of the water dropper) was shaped in a single piece using a mold and was then matched with a mold-formed lid (the upper part of the water dropper). The inner container of the body portion was roughly trimmed with a bamboo knife so that its upper surface could be securely attached to the bottom of the lid and prevent any leakage in the joined surface. It appears that the inner container for storing water was made first in a cylindrical shape that met the unit of quantity used at the time and could be easily formed by molding. It was transformed into a trapezoid shape during the process of combining it with the lid. A cylindrical inner container was reproduced using silicon 3D printing to compare its capacity with that of the original inner container. The comparison revealed that the reproduced container had a capacity of 152.5㎖, whereas the original container holds approximately 168.6㎖, a figure similar to three hop (around 174㎖) in Joseon-period units of quantity. Since the capacity of the cylindrical inner container corresponds to a known measure from the late Joseon dynasty, it is likely that the water dropper was originally produced to contain a cylindrical inner container.

Recent Developments and Field Application of Foreign Waterworks Automatic Meter Reading (국외 상수도 원격검침시스템의 개발 동향 및 현장 적용 사례 고찰)

  • Joo, Jin Chul;Ahn, Hosang;Ahn, Chang Hyuk;Ko, Kyung-Rok;Oh, Hyun-Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.863-870
    • /
    • 2012
  • The market trends of automatic meter reading associated with smart water meters were investigated. Also, recent developments and field applications of key technology for automatic meter reading associated with smart water meters were analyzed. Smart water meters have been manufactured mostly in United States and Europe and have been expanded their business to Asia. Integrated water management system combining with the additional functions such as real-time consumption metering, cost notification, water conservation, leak detection, water quality monitoring, and flow control have been operated in automatic meter reading. Both water quality and quantity data measured from smart water meters and sensors were transferred to data concentration units through neighborhood area network, and then were transferred to integrated server through wide area network. The data transfer methods were determined by comprehensively considering urban scale, density of smart water meters, power supply and network topologies. Common data collection methods such as fixed network to data concentation units, vehicles drive by, people walk by, and drone fly by have been applied. The automatic meter reading associated with smart water meters are spread throughout the world, and both water and energy savings result in saving the money and reducing the greenhouse gases emission.

Pharmacognostical Evaluation of Gymnema sylvestre R. Br.

  • Agnihotri, Adarsh Kumar;Khatoon, Sayyada;Agarwal, Manisha;Rawat, Ajay Kumar Singh;Mehrotra, Shanta;Pushpangadan, Palpu
    • Natural Product Sciences
    • /
    • v.10 no.4
    • /
    • pp.168-172
    • /
    • 2004
  • In India, Gymnema sylvestre due to the unique property of the plant to antagonize the sweet taste is known as 'Gur-mar'. It has several ethnomedicinal values as various tribals/traditional communities and rural peoples of India find diverse medicinal uses viz. antidiabetic, stomachic, diuretic, and is useful in cough and throat troubles. Besides, it has strong effect on reducing blood sugar. The present communication deals with the detailed pharmacognostical evaluation of the aerial parts of G. sylvestre collected from three places of the country-Varanasi (U.P), Panchmarhi (M.P), Salem (Tami Nadu) and commercial sample procured from local market. The botanical and physico-chemical parameters of all the samples were quite similar though little variations were observed in foaming index, alcohol and water soluble extractives of local sample. The microscopic characteristics of the drug are horse shoe shaped petiole with 3 amphicribal vascular bundles, sieve tubes well developed; anomocytic stomata only on the abaxial surface of the leaf, the fan shaped amphicribal vascular bundle, presence of intraxylary phloem. The TLC fingerprint profile of all the samples was more or less similar only the quantity of some of the compounds varied.

Analysis of Water Quality Improvement in Downstream River of Heightening Irrigation Dam through the Reservoir Operation (둑높이기 농업용저수지의 운영을 통한 하천 수질개선 효과 분석)

  • Jee, Yong-Keun;Lee, Mi-Seon;Lee, Jin-Hee;Jang, Jea-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.929-941
    • /
    • 2012
  • In recent years, interest in river environment such as riparian landscape, water quality and ecological conservation has been growing with increasing recreation on agricultural river watershed. That caused the increase of necessity of water resources development, one of solutions for the diversification of agricultural water demand and shortages. In this respects, heightening irrigation dam, as a part of the 4-major river restoration project, is necessary to secure not only additional agricultural water but also instream flow for water quality improvement. However, operation plan of irrigation dam still not be clear. In this study, additional storage which secured through heightening irrigation dam was estimated using SWAT model. And instream flow effects on water quality of downstream were evaluated. The findings show that the additional water supply will contribute positively to water quantity and quality of downstream. The results show a 2~10% water quality improvement effect on nutrients, as well as an 1~8% water quantity increasing effect. In particular, additional storage can be effectively supplied from February to April by the reservoir operation. However, maintaining better water quality in irrigation reservoirs is important because the water quality of irrigation reservoirs can be negatively impacts the water quality in downstream of reservoirs.

Performance evaluation of sea water heat exchanger installed in the submerged bottom-structure of floating architecture

  • Sim, Young-Hoon;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1062-1067
    • /
    • 2015
  • Floating architecture is a type of building that is geographically located on a sea or a river. It floats under the influence of buoyancy, and does not have an engine for moving it. Korea is a peninsula surrounded by sea except on the north side, so floating architectures have been mainly focused on two points: solving the issue of small territory and providing various leisure & cultural spaces. Floating architectures are expected to save energy effectively, if they use sea water heat, which is known to be clean energy with infinite reserves. To use sea water heat as the heat source and/or heat sink, this study proposes a model in which a sea water heat exchanger is embedded in the concrete structure in the lower part of the floating architecture that is submerged under the sea. Based on the results of performance evaluations of the sea water heat exchanger using CFD (computational fluid dynamics) analysis and mock-up experiments under various conditions, it is found out that the temperature difference between the inlet and outlet of the heat exchanger is in the range of $3.06{\sim}9.57^{\circ}C$, and that the quantity of heat transfer measured is in the range of 3,812~7,180 W. The CFD evaluation results shows a difference of 5% with respect to the results of mock-up experiment.