Browse > Article
http://dx.doi.org/10.3741/JKWRA.2012.45.9.929

Analysis of Water Quality Improvement in Downstream River of Heightening Irrigation Dam through the Reservoir Operation  

Jee, Yong-Keun (Div. of Water Environment, Korean Environment Institute)
Lee, Mi-Seon (Water Pollution Load Management Research Division, National Institute of Environmental Research)
Lee, Jin-Hee (Div. of Environmental Assessment I, Korean Environment Institute)
Jang, Jea-Ho (Div. of Water Environment, Korean Environment Institute)
Publication Information
Journal of Korea Water Resources Association / v.45, no.9, 2012 , pp. 929-941 More about this Journal
Abstract
In recent years, interest in river environment such as riparian landscape, water quality and ecological conservation has been growing with increasing recreation on agricultural river watershed. That caused the increase of necessity of water resources development, one of solutions for the diversification of agricultural water demand and shortages. In this respects, heightening irrigation dam, as a part of the 4-major river restoration project, is necessary to secure not only additional agricultural water but also instream flow for water quality improvement. However, operation plan of irrigation dam still not be clear. In this study, additional storage which secured through heightening irrigation dam was estimated using SWAT model. And instream flow effects on water quality of downstream were evaluated. The findings show that the additional water supply will contribute positively to water quantity and quality of downstream. The results show a 2~10% water quality improvement effect on nutrients, as well as an 1~8% water quantity increasing effect. In particular, additional storage can be effectively supplied from February to April by the reservoir operation. However, maintaining better water quality in irrigation reservoirs is important because the water quality of irrigation reservoirs can be negatively impacts the water quality in downstream of reservoirs.
Keywords
environmental improvement in downstream; heightening irrigation reservoirs; reservoir operation; SWAT model; water resource security;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 강두기, 김만식, 박재범, 김종성, 갈병석, 신동수 (2010). 중소하천 수리시설물의 운영 및 관리현황, 경제인문사회연구회, 녹색성장정책연구 위탁연구 2010, 환경정책.평가연구원. pp. 135-138.
2 강형식, 장재호, 안종호, 김익재 (2011). "유역 모형과 하천 모형의 연계를 통한 낙동강 본류 흐름 예측." 한국수자원학회논문집, 한국수자원학회, 제42권, 제7호, pp. 577-590.   과학기술학회마을   DOI
3 국토해양부, 4대강 살리기 추진본부 (2009). 4대강 살리기 마스터플랜. pp. 87-105.
4 김남원, 이정은, 이병주(2007). "한강유역의 다목적댐 운영에 따른 유황변동 특성분석 및 평가." 대한토목학회지, 대한토목학회, 제27권, 제1B호, pp. 53-63.
5 김필식, 김선주 (2006). "소규모 댐의 효과적 운영을 위한 저수관리 기법 개발." 한국농공학회논문집, 한국농공학회, 제48권, 제2호, pp. 27-35.   과학기술학회마을   DOI
6 농림수산식품부, 한국농어촌공사 (2010). 농업생산기반정비사업 통계연보. pp. 27-371.
7 농림수산식품부, 한국농어촌공사 (2009). 농업용수 수질측 정망 조사 보고서. pp. 135-138.
8 박정규 (2007). "금강유역의 장기유출해석을 위한 SWAT 모형 적용." 환경관리학회지, 환경관리학회, 제13권, 제1호, pp. 41-48.
9 신현석, 강두기 (2006). "SWAT모형을 이용한 인공저류시설물의 하류장기유출 영향분석 기법에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제39권, 제3호, pp. 227-240.   과학기술학회마을   DOI
10 안시권, 조영현, 성영두 (2008). "댐 하류하천 환경개선을 위한 다목적댐 증가방류 효과 고찰." 한국수자원학회 논문집, 한국수자원학회, 제41권, 제10호, pp. 41-47.   과학기술학회마을
11 안종호, 홍용석, 강형식, 김호정, 한 대호, 장재호, 서동일, 박윤희(2010). 기후변화 대응을 위한 수질 제어 및 관리 방안 I. 경제인문사회연구회, 녹색성장종합연구총서, 10-02-97(6), 한국환경정책.평가연구원. pp. 112-116.
12 이광야, 김해도, 조진훈 (2011). "농업용저수지 운영표준안 개발." 한국수자원학회 2011년도 학술발표회, 한국수자원학회, pp. 118.   과학기술학회마을
13 이용준, 박민지, 박기욱, 김성준 (2008). "농업용 저수지 운영을 고려한 SWAT 모형의 수문학적 거동 분석." 한국지리정보학회지, 한국지리정보학회, 제11권, 제1호, pp. 20-30.
14 이은형, 서동일(2011). "SWAT-CUP을 이용한 대청호 유역 장기 유출 유량 보정 및 검증." 한국수자원학회논문집, 한국수자원학회, 제44권, 제9호, pp. 711-720.   과학기술학회마을   DOI
15 최낙원 (2010). 농업용 저수지를 이용한 하천유지용수 확보방안 : 보현댐과 횡계저수지 연계를 중심으로. 석사학위논문, 영남대학교. pp. 1-72.
16 한강수계관리위원회 (2006). 유역내 하천유지 가능 유하량 해석. pp. 21-114.
17 한국수자원공사 (1997). 댐건설 전후의 자연환경변화에 관한 연구 : 대청댐 유역을 중심으로. pp. 1-242.
18 환경부 (2008). 2007 상수도통계연보. pp. 308-353.
19 Arnold, J.G., and Fohrer, N. (2005). "SWAT2000: current capabilities and research opportunities in applied watershed modelling." Hydrol Process, Vol. 19, pp. 563-572.   DOI
20 ASCE (1993). "ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models." Irrigation Drainage Engineering, Vol. 119, No. 3, pp. 429-442.   DOI   ScienceOn
21 Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Srinivasan, J.R., and Williams, J.R. (2004). Soil and Water Assessment Tool; The theoretical documentation (Version 2005), U.S. Agricultural Research Service. pp. 1-476.
22 Brown, L.C., and Barnwell, T.O. Jr. (1987). The enhanced water quality models QUAL2E and QUAL2EUNCAS documentation and user manual. EPA document EPA/600/3-87/007, USEPA, Athens, GA. pp. 1-184.
23 Donigian, Jr., A.S. (2000). HSPF Training Workshop Handbook and CD. Lecture #19. Calibration and Verification Issues, Slide #L19-22, EPA Headquarters, Washington Information Center, 10-14 January, 2000, Presented and prepared for U.S. EPA, Office of Water, Office of Science and Technology, Washington, DC.
24 Nash, J.E., and Sutcliffe, J.V. (1970). "Riverflow forecasting through conceptual model." Hydrology, Vol. 10, No. 3, pp. 282-290.   DOI   ScienceOn
25 Sharpley, A.N., and Syers, J.K. (1979). "Phosphorus inputs into a stream draining an agricultural watershed: II. Amounts and relative significance of runoff types." Water, Air and Soil Pollution, Vol. 11, pp. 417-428.
26 Sophocleous, M.A., Koelliker, J.K., Govindaraju, R.S., Birdie, T., Ramireddygari, S.R., and Perkins, S.P. (1999). "Integrated numerical modeling for basin-wide water management: The case of the rattlesnake creek basin in south-central kansas." Hydrology, Vol. 214, pp. 179-196.   DOI   ScienceOn